欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (1): 41-46.doi: 10.13385/j.cnki.vacuum.2024.01.06

• Thin Film • Previous Articles     Next Articles

Studies on the Microstructure and Optical Properties of Nanocrystalline ZnSe:Cox Thin Film Prepared by Pulsed Laser Deposition

LI Shu-feng1, WANG Li2, GAO Dong-wen2   

  1. 1. College of Police Equipment Technical, Chinese People's Police University, Langfang 065000, China;
    2. College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • Received:2023-04-17 Online:2024-01-25 Published:2024-01-24

Abstract: ZnSe:Cox (x=0.1, 0.3, 0.5) nanocrystalline thin films were deposited on sapphire substrates by pulsed laser deposition at substrate temperature of 800 ℃. The crystal structure and optical properties of the thin films were investigated by X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy, optical transmittance and photoluminescence spectra. The results show that the thin films with excellent crystalline quality and (111) preferred orientation are prepared. With increasing Co concentration, the crystalline quality, average transmittance and band gap of films decrease. There is a absorption band at the wavelength of about 700-850 nm in the film, which comes from the transition between 4A2(4F)→4T1(4P) energy levels of Co2+ in the tetrahedral crystal field composed of surrounding Se2-. The films reach an overdoping state when the x value increases to 0.5, and the photoluminescence intensity of films decrease substantially due to the α-Co impurities un-incorporating into ZnSe lattice.

Key words: pulsed laser deposition, ZnSe:Co, thin film, optical property

CLC Number:  O472

[1] KARADZA B, AVERMAET H V, MINGABUDINOVA L, et al.Efficient, high-CRI white LEDs by combining traditional phosphors with cadmium-free InP/ZnSe red quantum dots[J]. Photonics Research, 2022, 10(1): 155-165.
[2] YIN H, BAO K, WANG Y, et al.Photocatalytic properties of zinc selenide and cobalt selenide nanocomposite[J]. Journal of the Chemical Society of Pakistan, 2022, 44(2): 89-97.
[3] SUNAINA, GANGULI A K, MEHTA S K. High performance ZnSe sensitized ZnO heterostructures for photo-detection applications[J]. Journal of Alloys and Compounds, 2022, 894: 162263.
[4] ELSAEEDY H I, HASSAN A A, YAKOUT H A, et al.The significant role of ZnSe layer thickness in optimizing the performance of ZnSe/CdTe solar cell for optoelectronic applications[J]. Optics & Laser Technology, 2021, 141:107139.
[5] CHENG Y Z, ZHANG X B, SONG H X.C5+ ion irradiated ZnSe optical waveguide operating from near-infrared to mid-infrared wavelength band[J]. Optik, 2022, 255: 168715.
[6] BILLAHA M A, BHOWMICK B, CHOUDHARY S K, Investigating inter-subband photocurrent in CdS/ZnSe quantum well photodetector for infrared applications[J]. Microsystem Technologies, 2021, 27(9): 3357-3363.
[7] 莫延宏, 张钢强, 孙朋涛. ZnSe:Mn纳米片的合成及光催化性能研究[J]. 中国锰业, 2022, 40(2):15-20.
[8] ZOU M, WANG J, KHAN M S, et al.Spin-related optical behaviors of dilute magnetic semiconductor ZnSe:Ni(II) nanobelts[J]. Nanotechnology, 2020, 31(32): 325002.
[9] PAWAR S T, CHAVAN G T, PRAKSHALE V M, et al.Probing into the optical and electrical properties of hybrid Zn1-xCoxSe thin films[J]. Journal of Materials Science: Materials in Electronics, 2018, 29:3704-3714.
[10] 张健, 齐振华, 李建浩, 等.磁控溅射法制备ITO膜层及其光电性能研究[J]. 真空, 2022, 59(6): 45-50.
[11] XU W L, NIU M S, YANG X Y, et al.Chemical vapor deposition growth of phase-selective inorganic lead halide perovskite films for sensitive photodetectors[J]. Chinese Chemical Letters,2021, 32(1): 489-492.
[12] 刘祺, 徐均琪, 苏俊宏, 等.热蒸发技术制备梯度折射率薄膜的研究[J]. 真空, 2022, 59(6): 22-28.
[13] LI S F, WANG L, GAO D W, et al.Effects of substrate temperature on microstructure, morphology and optical properties of ZnSe:Co films obtained by pulsed laser deposition[J]. Thin Solid Films, 2018, 660: 405-410.
[14] XIA K L, JIA G, GAN H T, et al.Ultrabroadband mid-infrared emission from Cr2+:ZnSe doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching[J]. Chinese Physics B, 2021, 30(9): 094208.
[15] HASABELDAIM E, NTWAEABORWA O M, KROON R E, et al.Effect of substrate temperature and post annealing temperature on ZnO:Zn PLD thin film properties[J]. Optical Materials, 2017, 74: 139-149.
[16] LAURETI S, AGOSTINELLI E, SCAVIA G, et al.Effect of oxygen partial pressure on PLD cobalt oxide films[J]. Applied Surface Science, 2008, 254(16): 5111-5115.
[17] SU X Q, WANG L, CHEN J B, et al.Role of cobalt in ZnO:Co thin films[J]. Journal of Physics D: Applied Physics, 2011, 44: 265002.
[18] 文昌秀, 石华伟, 陈美伶, 等. 过渡金属Co2+离子掺杂ZnS硫化物纳米晶制备与中红外发光特性研究[J]. 光子学报, 2020, 49(2): 199-204.
[19] 党新志, 张仁刚, 张鹏, 等. 不同硫压退火对溅射沉积ZnS薄膜性能的影响[J]. 物理学报, 2023, 72(3): 107-113.
[20] BAHADUR N, SRIVASTAVA A K, KUMAR S, et al.Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films[J]. Thin Solid Films, 2010, 518(18): 5257-5264.
[21] PRAYAS C P, SURAJIT G, SRIVASTAVA P C, Antiferromagnetic coupling in Co-doped ZnS[J]. Journal of Materials Science, 2015, 50(24): 7919-7929.
[22] 杨扬, 李刚, 金克武, 等. 室温射频磁控溅射制备纳米晶ZnSx薄膜及其性能研究[J]. 光子学报, 2021, 50(7): 230-237.
[1] WU Li-ying, LIU Dan, FU Xue-cheng, CHENG Xiu-lan. Research Progress on Ferroelectric Properties of Hafnium Oxide Doped Thin Films [J]. VACUUM, 2024, 61(1): 10-11.
[2] ZHAO Zhen-yun, CHEN Ding-jun, GUO Yuan-meng, YANG Hao, DONG Shuai, SUN Tie-sheng, HUANG Mei-dong. Hydrophobic Properties of Chromium Nitride Thin Films at Different Temperatures [J]. VACUUM, 2024, 61(1): 27-33.
[3] HUANG Chuan-xin, XIN Ji-ying, TIAN Zhong-jun, WANG Meng, LÜ Kai-kai, LIANG Lan-ju, LIU Yun-yun. Improvement of the Electrical Performance and Stability of InZnO Material and TFT by Oxygen Plasma Processing [J]. VACUUM, 2023, 60(4): 24-28.
[4] XIANG Yu-chun, ZHU Jian-lei, YUAN Ya. Effect of Oxygen Pressure on the Properties of CuO Films Grown by Pulse Laser Deposition [J]. VACUUM, 2023, 60(3): 42-45.
[5] YANG Zhao, FU Zhen-xiao, TA Shi-wo, WANG Xin-hao, YAO Ri-hui, NING Hong-long. Advances in Tantalum Nitride Resistors Thin Film Materials [J]. VACUUM, 2022, 59(6): 34-39.
[6] ZHANG Jian, QI Zhen-hua, LI Jian-hao, NIU Xia-bin, XU Quan-guo, ZONG Shi-qiang. Growth, Characterization of ITO Films Deposited by DC Magnetron Sputtering [J]. VACUUM, 2022, 59(6): 45-50.
[7] XIN Xian-feng, LIU Lin-gen, LIN Guo-qiang, DONG Chuang, DING Wan-yu, ZHANG Shuang, WANG Qi-zhen, LI Jun, WAN Peng. Preparation and Properties of Zr55Cu30Al10Ni5 Amorphous Thin Films [J]. VACUUM, 2022, 59(5): 1-6.
[8] WU Shuai, LIU Shuang, QIN Li-zhao, ZHANG Xu, ZHANG Tong-hua, LIAO Bin, WANG Ke-ping. Study on Thermal Stability of CrCN Films Prepared by FCVAD Technology [J]. VACUUM, 2022, 59(5): 14-19.
[9] LIAO Guo-jin, YAN Shao-feng, YI Deng-li, DAI Xiao-chun. The Luminescent Property of Al2O3:Ce MFRMS Thin Films Sputtered by Optimal Design of Experiments [J]. VACUUM, 2022, 59(1): 24-28.
[10] ZHANG Jie, DENG Jin-xiang, XU Zhi-yang, KONG Le, DUAN Ping, WANG Xiao-lei, MENG Jun-hua, LI Rui-dong, ZHANG Xiao-xia, SUN Xu-peng, YANG Zi-shu. Study on Optical and Electrical Properties of β-Ga2O3/p-SiNWs Heterojunctions [J]. VACUUM, 2022, 59(1): 33-39.
[11] DUAN Shan-Shan, SHI Chang-yong, YANG Li-Zhen, LIU Zhong-wei, ZHANG Hai-bao, CHEN Qiang. The Recent Development and Future of Atomic Layer Deposition of Alumina Thin Films [J]. VACUUM, 2021, 58(6): 13-20.
[12] WEI Meng-yao, WANG Hui, HAN Wen-fang, WANG Hong-li, SU Yi-fan, TANG Chun-mei, DAI Ming-jiang, SHI Qian. Study on Electrochromic Properties of Tungsten Oxide Films Deposited by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2021, 58(5): 50-56.
[13] CHEN QIAN, YANG Li-zhen, LIU Zhong-Wei, ZHANG Hai-bao, CHEN Qiang. Present Situation and Development of Nano Films Deposited by Molecular Layer Deposition [J]. VACUUM, 2021, 58(5): 26-31.
[14] ZHANG Xiao-xia, DENG Jin-xiang, KONG Le, LI Rui-dong, YANG Zi-shu, ZHANG Jie. Preparation and Study of Si-doped β-Ga2O3 Thin Films with Different Content [J]. VACUUM, 2021, 58(5): 57-61.
[15] ZHANG Xin-hui, LI Qing-xiao. Effect of Vacuum Heat Treatment on Structure and Photoelectric Properties of AZO Film [J]. VACUUM, 2021, 58(3): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .