欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (1): 1-12.doi: 10.13385/j.cnki.vacuum.2023.01.01

• 薄膜 •    下一篇

增韧抗冻水凝胶柔性应变传感器研究进展*

贺文壮, 李建昌   

  1. 东北大学机械工程与自动化学院真空流体工程研究中心,辽宁 沈阳 110819
  • 收稿日期:2022-03-07 出版日期:2023-01-25 发布日期:2023-02-07
  • 通讯作者: 李建昌,教授,博士生导师。
  • 作者简介:贺文壮(1995-),男,辽宁省本溪满族自治县人,硕士生。
  • 基金资助:
    *国家自然科学基金(51773030)

Latest Studies on Toughened Anti-freeze Hydrogel Flexible Strain Sensor

HE Wen-zhuang, LI Jian-chang   

  1. Vacuum and Fluid Engineering Research Center, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2022-03-07 Online:2023-01-25 Published:2023-02-07

摘要: 水凝胶作为一种结构与生物组织类似的柔性材料,被广泛地应用在柔性传感器等领域。但其内部含水量较大导致力学性能较差,且在低温环境下易结冰失效。本文从增韧机理、抗冻方法以及疲劳特性等方面对增韧抗冻水凝胶进行了综述。首先,对不同增韧机理水凝胶的力学性能以及内部结构进行了对比;其次,讨论了低温环境下水凝胶的抗冻方法;最后,总结了水凝胶在长时间静态或循环加载情况下的疲劳损伤特性。未来应致力于增加水凝胶的保水抗冻性能,深入研究水凝胶疲劳失效机理,以期为耐低温、抗疲劳水凝胶传感器的应用提供理论基础。

关键词: 水凝胶, 增韧机理, 抗冻方法, 疲劳特性

Abstract: As a flexible material with similar structure to biological tissue, hydrogel has been widely used in flexible sensors and other fields. However, the mechanical properties of hydrogel are poor because of its high water content, and the hydrogel is easy to freeze and fail under low temperature environment. This paper reviews recent studies of hydrogel from the aspects of toughening mechanism, antifreeze method, and fatigue characteristics. Firstly, the mechanical properties and internal structures between different toughening hydrogels are compared. Secondly, the antifreeze method of hydrogel under low temperature is discussed. Finally, the fatigue damage characteristics of hydrogel in long-term static or cycle mechanical loading are summarized. In the future, it should be committed to increase the water-freeze resistance of hydrogel, and further study the hydrogel fatigue failure mechanism, which may provide theoretical basis for the application of low temperature and fatigue resistant hydrogel sensors.

Key words: hydrogel, toughening mechanism, antifreeze method, fatigue property

中图分类号: 

  • TB43
[1] MA C X, LE X X, TANG X L, et al.A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations[J]. Advanced Functional Materials, 2016, 26(47): 8670-8676.
[2] 朱亚萍. 具有双网络结构的导电水凝胶柔性传感器[D]. 山西: 太原理工大学, 2021.
[3] 孙靖先. 离子凝胶基柔性应变传感器研究[D]. 北京: 北京化工大学, 2020.
[4] DAI X Y, ZHANG Y Y, GAO L, et al.A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel[J]. Advanced Materials, 2015, 27(23): 3566-3571.
[5] YAO C, LIU Z, YANG C, et al.Poly(N-isopropylacrylamide)- Clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators[J]. Advanced Functional Materials, 2015, 25(20): 2980-2991.
[6] GONG J P, KATSUYAMA Y, KUROKAWA T, et al.Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14): 1155-1158.
[7] HARAGUCHI K, TAKEHISA T.Nanocopsite hydrogels: a unique organic inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties[J]. Advanced Materials, 2002, 14(16): 1121-1124.
[8] JIANG G, LIU C, LIU X, et al.Construction and properties of hydrophobic association hydrogels with high mechanical strength and reforming capability[J]. Macromolecular Materials and Engineering, 2009, 294(12): 815-820.
[9] KANAI T, AOHKOSHI S I, NAKAJIMA A, et al.A ferroelectric ferromagnet composed of(PLZT)x(BiFeO3)1-X solid solution[J]. Advanced Materials, 2001, 13(7): 485-487.
[10] HUANG T, XU H G, JIAO K X, et al.A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel[J]. Advanced Materials, 2007, 19(12): 1622-1626.
[11] SAKAI T, MATSUNAGA T, YAMAMOTO Y J, et al.Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers[J]. Macromolecules, 2008, 41(14): 5379-5384.
[12] YIN H, AKASAKI T, TAO L S, et al.Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties[J]. Journal of Materials Chemistry B, 2013, 1(30): 3685-3693.
[13] ZHOU L, PEI X, FANG K, et al.Super tough, ultra-stretchable, and fast recoverable double network hydrogels physically crosslinked by triple non-covalent interactions[J]. Polymer, 2020, 192: 122319.
[14] RODELL C B, DUSAJ N N, HIGHLEY C B, et al.Injectable and cytocompatible tough double-network hydrogels through tandem supramolecular and covalent crosslinking[J]. Advanced Materials, 2016, 28(38): 8419-8424.
[15] LI X, WANG H, LI D, et al.Dual ionically cross-linked double-network hydrogels with high strength, toughness, swelling resistance, and improved 3D printing processability[J]. ACS Applied Materials Interfaces, 2018, 10(37): 31198-31207.
[16] BI S, WANG P, HU S, et al.Construction of physical- crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair[J]. Carbohydrate Polymers, 2019, 224: 115176.
[17] ZHAO X, LIANG J, SHAN G, et al.High strength of hybrid double-network hydrogels imparted by inter-network ionic bonds[J]. Journal of Materials Chemistry B, 2019, 7(2): 324-333.
[18] XU J, LIU X, REN X, et al.The role of chemical and physical crosslinking in different deformation stages of hybrid hydrogels[J]. European Polymer Journal, 2018, 100: 86-95.
[19] CHOI S, CHOI Y, KIM J.Anisotropic hybrid hydrogels with superior mechanical properties reminiscent of tendons or ligaments[J]. Advanced Functional Materials, 2019, 29(38): 1904342.
[20] LIU S, ODERINDE O, HUSSAIN I, et al.Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties[J]. Polymer, 2018, 144: 111-120.
[21] XIA S, SONG S, GAO G.Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion[J]. Chemical Engineering Journal, 2018, 354: 817-824.
[22] LIU R, LIANG S, TANG X Z, et al.Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels[J]. Journal of Materials Chemistry, 2012, 22: 14160-14167.
[23] WU G, PANAHI-ARMAD M, XIAO X, et al.Fabrication of capacitive pressure sensor with extraordinary sensitivity and wide sensing range using PAM/BIS/GO nanocomposite hydrogel and conductive fabric[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106373.
[24] JING Q, LAW J Y, TAN L P, et al.Preparation, characterization and properties of polycaprolactone diol-functionalized multi-walled carbon nanotube/ thermoplastic polyurethane composite[J]. Composites Part A: Applied Science and Manufacturing, 2015, 70: 8-15.
[25] QIN Z, SUN X, YU Q, et al.Carbon nanotubes/ hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors[J]. ACS Applied Mater Interfaces, 2020, 12(4): 4944-4953.
[26] YANG J, ZHAO J J, XU F, et al.Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions[J]. ACS Applied Mater Interfaces, 2013, 5(24): 12960-12967.
[27] PEI Z, YU Z, LI M, et al.Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor[J]. International Journal of Biological Macromolecules, 2021, 179: 324-332.
[28] WANG T, ZHENG S, SUN W, et al.Notch insensitive and self-healing PNIPAm-PAM-clay nanocomposite hydrogels[J]. Soft Matter, 2014, 10(19): 3506-3512.
[29] CHEN L, WU Q, ZHANG J, et al.Anisotropic thermoresponsive hydrogels by mechanical force orientation of clay nanosheets[J]. Polymer, 2020, 192: 122309.
[30] CHEN J, XU X, LIU M, et al.Topological cyclodextrin nanoparticles as crosslinkers for self-healing tough hydrogels as strain sensors[J]. Carbohydrate Polymers, 2021, 264: 117978.
[31] WANG S, XIANG J, SUN Y, et al.Skin-inspired nanofibrillated cellulose-reinforced hydrogels with high mechanical strength, long-term antibacterial, and self-recovery ability for wearable strain/pressure sensors[J]. Carbohydrate Polymers, 2021, 261: 117894.
[32] WU X, LIAO H, MA D, et al.A wearable, self-adhesive, long-lastingly moist and healable epidermal sensor assembled from conductive MXene nanocomposites[J]. Journal of Materials Chemistry C, 2020, 8(5): 1788-1795.
[33] LI X, HE L, LI Y, et al.Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors[J]. ACS Nano, 2021, 15(4): 7765-7773.
[34] WANG Q, PAN X, WANG X, et al.Spider web-inspired ultra-stable 3D Ti3C2TX(MXene) hydrogels constructed by temporary ultrasonic alignment and permanent in-situ self-assembly fixation[J]. Composites Part B: Engineering, 2020, 197: 108187.
[35] SU G, YIN S, GUO Y, et al.Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications[J]. Materials Horizons, 2021, 8(6): 1795-1804.
[36] ZHANG H, WU X, QIN Z, et al.Dual physically cross-linked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors[J]. Cellulose, 2020, 27(17): 9975-9989.
[37] LI Y, LIU C, LV X, et al.A highly sensitive strain sensor based on a silica@polyaniline core-shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity[J]. Soft Matter, 2021, 17(8): 2142-2150.
[38] ZHANG G, CHEN S, PENG Z, et al.Topologically enhanced dual-network hydrogels with rapid recovery for low-hysteresis, self-adhesive epidemic electronics[J]. ACS Applied Materials Interfaces, 2021, 13(10): 12531-12540.
[39] DASCHAKRABORTY S.How do glycerol and dimethyl sulphoxide affect local tetrahedral structure of water around a nonpolar solute at low temperature? Importance of preferential interaction[J]. Journal Chemical Physics, 2018, 148(13): 134501.
[40] MORELLE X P, ILLEPERUMA W R, TIAN K, et al.Highly stretchable and tough hydrogels below water freezing temperature[J]. Advanced Materials, 2018, 30(35): 1801541.
[41] CAO Z, LIU H, JIANG L.Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids[J]. Materials Horizons, 2020, 7(3): 912-918.
[42] SUI X, GUO H, CHEN P, et al.Zwitterionic osmolyte- based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature[J]. Advanced Functional Materials, 2019, 30(7): 1907986.
[43] WEI Y, XIANG L, OU H, et al.MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality[J]. Advanced Functional Materials, 2020, 30(48): 2005135.
[44] RONG Q, LEI W, CHEN L, et al.Anti-freezing, conductive self-healing organohydrogels with stable strain- sensitivity at subzero temperatures[J]. Angewandte Chemie International Edition, 2017, 56(45): 14159-14163.
[45] HAN L, LIU K, WANG M, et al.Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance[J]. Advanced Functional Materials, 2018, 28(3): 1704195.
[46] CHEN F, ZHOU D, WANG J, et al.Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement[J]. Angewandte Chemie International Edition, 2018, 57(22): 6568-6571.
[47] YE Y, ZHANG Y, CHEN Y, et al.Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors[J]. Advanced Functional Materials, 2020, 30(35): 2003430.
[48] LOU D, WANG C, HE Z, et al.Robust organohydrogel with flexibility and conductivity across the freezing and boiling temperatures of water[J]. Chemical Communication, 2019, 55(58): 8422-8425.
[49] TANAKA Y, FUKAO K, MIYAMOTO Y.Fracture energy of gels[J]. European Physical Journal E, 2000, 3(4): 395-401.
[50] TANG J, LI J, VLASSAK J J, et al.Fatigue fracture of hydrogels[J]. Extreme Mechanics Letters, 2017, 10: 24-31.
[51] LI Z, LIU Z, NG T Y, et al.The effect of water content on the elastic modulus and fracture energy of hydrogel[J]. Extreme Mechanics Letters, 2020, 35: 100617.
[1] 马泽钦, 李海鸣, 庄妙霞, 李婷婷, 李镇舟, 蒋洁, 连松友, 王江涌, 徐从康. 高分辨率钼/硅纳米多层膜TOF-SIMS和Pulsed-RF-GDOES深度谱的定量分析*[J]. 真空, 2023, 60(1): 17-22.
[2] 秦丽丽, 董茂进, 冯煜东, 韩仙虎, 蔡宇宏, 王毅, 李小金, 马凤英. 超高水氧阻隔膜研究进展*[J]. 真空, 2023, 60(1): 23-29.
[3] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 程秀兰. Cu电极保护膜层氧化铝的原子层沉积工艺研究*[J]. 真空, 2023, 60(1): 30-35.
[4] 张以忱. 第二十二讲 化学气相沉积(CVD)技术[J]. 真空, 2023, 60(1): 86-88.
[5] 刘祺, 徐均琪, 苏俊宏, 韩刚, 李阳, 袁松松. 热蒸发技术制备梯度折射率薄膜的研究*[J]. 真空, 2022, 59(6): 22-28.
[6] 刘兴龙, 沈佩, 王光文, 岳向吉, 蔺增. 真空电弧源冷却结构对温度场的影响研究*[J]. 真空, 2022, 59(6): 29-33.
[7] 杨曌, 付振晓, 沓世我, 王鑫豪, 姚日晖, 宁洪龙. 钽氮化合物电阻薄膜的研究进展*[J]. 真空, 2022, 59(6): 34-39.
[8] 陈兰兰, 孙小杰, 尉琳琳, 任月庆, 任冬雪, 梁文斌. 利用PEALD制备PET基Al2O3阻隔膜及其性能研究*[J]. 真空, 2022, 59(6): 40-44.
[9] 张健, 齐振华, 李建浩, 牛夏斌, 徐全国, 宗世强. 磁控溅射法制备ITO膜层及其光电性能研究[J]. 真空, 2022, 59(6): 45-50.
[10] 王鑫, 甄真, 牟仁德, 何利民, 许振华. 沉积真空度对铝化物涂层相结构和高温氧化行为的影响*[J]. 真空, 2022, 59(5): 20-27.
[11] 刘洋, 张雅楠, 高晟元, 赵祯赟, 郑明昊, 黄美东. 多弧离子镀Zr/ZrN多层膜的力学性能研究*[J]. 真空, 2022, 59(5): 28-31.
[12] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2022, 59(5): 102-104.
[13] 徐新昀, 朱文丽, 谢晋如, 刘强, 李雪峰. 真空卷绕蒸发镀膜机上实现镀透明氧化铝膜的一种方法[J]. 真空, 2022, 59(4): 48-51.
[14] 张健, 李建浩, 齐振华. 探究直流磁控溅射下工艺参数对SiC薄膜性能的影响规律[J]. 真空, 2022, 59(4): 52-55.
[15] 张以忱. 第二十一讲真空卷绕镀膜[J]. 真空, 2022, 59(4): 86-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 李志胜. 空间环境下超大型红外定标用辐射屏蔽门的研制[J]. 真空, 2018, 55(5): 66 -70 .
[4] 郑 列, 李 宏. 200kV/2mA 连续可调直流高压发生器的设计[J]. 真空, 2018, 55(6): 10 -13 .
[5] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[6] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[7] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[8] 纪 明, 孙 亮, 杨敏勃. 一种用于对月球样品自动密封锁紧的设计[J]. 真空, 2018, 55(6): 24 -27 .
[9] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[10] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .