欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (2): 22-28.doi: 10.13385/j.cnki.vacuum.2024.02.04

• 薄膜 • 上一篇    下一篇

大尺寸方形载板MOCVD反应腔分气和薄膜沉积过程影响因素的数值模拟研究*

于大洋1, 吴改2   

  1. 1.武汉大学动力与机械学院,湖北 武汉 430072;
    2.武汉大学工业科学研究院,湖北 武汉 430072
  • 收稿日期:2023-08-11 出版日期:2024-03-25 发布日期:2024-03-28
  • 通讯作者: 吴改,副研究员。
  • 作者简介:于大洋(1982-),男,山东五莲人,博士生,高级工程师。

Numerical Simulation of the Influence of Gas Distribution and Film Deposition Process in MOCVD Reactor with Large-sized Square Carrier

YU Da-yang1, WU Gai2   

  1. 1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;
    2. The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
  • Received:2023-08-11 Online:2024-03-25 Published:2024-03-28

摘要: 介绍了适用于光伏行业砷化镓(GaAs)薄膜电池制备所需的大尺寸方形载板金属有机化学气相沉积(MOCVD)反应腔的多级分气系统,以及该反应腔结构设计过程中的核心参数:喷淋盘孔尺寸、载板与喷淋盘间距(简称“腔室间距”)。基于自研的容量为36×4寸的MOCVD反应腔模型,应用计算流体力学(CFD)方法,同时考虑GaAs沉积过程中的气相反应和表面反应,对不同孔参数和腔室间距时的气流分配和薄膜化学气相沉积过程进行了数值模拟。考察了跨孔压差与气流量分配均匀性的关系,以及腔室间距对反应区气体流动以及GaAs薄膜沉积的影响。结果表明:初级“蜘蛛”形分气盘将主进气口分配成64个子进气口后的分气均匀性较好,质量流量值波动幅度仅为0.22%;增加喷淋盘孔深度可缓慢且线性提高孔压差,而缩小孔径对于压差的增加非常迅速;增加喷淋盘孔压差可提高次级分气均匀性,但提升效果趋缓;大腔室间距下的沉积速率低,且均匀性差;随着腔室间距缩小,沉积速率持续增加的同时,沉积均匀性先变好,后逐渐由于气流震荡而变差。

关键词: 金属有机化学气相沉积, 砷化镓, 数值模拟, 气体分配

Abstract: The multistage gas distribution system of large-sized square carrier metal-organic chemical vapor deposition (MOCVD) for the preparation of gallium arsenide (GaAs) thin film in the photovoltaic industry is introduced. The core parameters in the design process of the reactor structure, such as the size of the showerhead hole and the spacing between the showerhead and carrier (chamber spacing) are discussed. Based on a self-developed MOCVD reactor model with a carrier of 36×4 inches wafers, the computational fluid dynamics (CFD) method and the gas reaction and surface reaction during GaAs film deposition were used to simulate the gas distribution and chemical vapor deposition (CVD) process with different parameters and chamber spacing. The relationship between cross-orifice pressure difference and gas flow distribution uniformity, and the effect of chamber spacing on gas flow and GaAs film deposition were investigated. The results show that after the primary "spider" plate divides the main gas inlet into 64 sub-gas intakes, the gas distribution uniformity is better, and the fluctuation amplitude of mass flow rate value is only 0.22%. Increasing the hole depth of the showerhead increases the hole pressure difference slowly and linearly, while reducing the hole diameter increases the pressure difference very quickly. Increasing the hole pressure difference of the showerhead can improve the uniformity of secondary gas separation, but the lifting effect is slow. The deposition rate is low and the uniformity is poor at large chamber spacing. With the decreasing of the spacing and the increasing of deposition rate, the deposition uniformity becomes better at first, and then becomes worse gradually due to the turbulence of gas flow.

Key words: MOCVD, GaAs, numerical simulation, gas distribution

中图分类号:  TK72;TB43

[1] KNECHTLI R C, LOO R Y, KAMATH G S.High-efficiency GaAs solar cells[J]. IEEE Transactions on Electron Devices, 1984, 31(5): 577-588.
[2] CHOW T P, OMURA I, HIGASHIWAKI M, et al.Smart power devices and ICs using GaAs and wide and extreme bandgap semiconductors[J]. IEEE Transactions on Electron Devices. 2017, 64(3): 856-873.
[3] SAHIN D, GAGGERO A, WEBER J W, et al.Waveguide nanowire superconducting single-photon detectors fabricated on GaAs and the study of their optical properties[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(2): 3800210.
[4] MOON S, KIM K, KIM Y, et al.Highly efficient single-junction GaAs thin-film solar cell on flexible substrate[J]. Scientific Reports, 2016, 6(1): 30107.
[5] AL-EZZI A S, ANSARI M N M. Photovoltaic solar cells: a review[J]. Applied System Innovation, 2022, 5(4): 67.
[6] MASSIOT I, CATTONI A, COLLIN S.Progress and prospects for ultrathin solar cells[J]. Nature Energy, 2020, 5(12): 959-972.
[7] 徐楠, 左然, 何晓焜, 等. 垂直转盘式MOCVD反应器中GaN化学反应路径的影响研究[J]. 人工晶体学报, 2012, 41(4): 1007-1112.
[8] 于海群, 左然, 陈景升. 一种多喷淋头式MOCVD反应器的设计与数值模拟[J]. 人工晶体学报, 2011, 40(4): 1065-1071.
[9] 徐谦, 左然, 张红. MOCVD生长GaN的反应动力学分析与数值模拟[J]. 化工学报, 2009, 60(2): 384-388.
[10] TSAI M L, FANG C C, LEE L Y.Numerical simulation of the temperature distribution in a planetary MOCVD reactor[J]. Chemical Engineering and Processing, 2014, 81: 48-58.
[11] MIHOPOULOS T G, HUMMEL S G, JENSEN K F.Simulation of flow and growth phenomena in a close-spaced reactor[J]. Journal of Crystal Growth, 1998, 195(1-4): 725-732.
[12] MITROVIC B, PAREKH A, RAMER J, et al.Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors[J]. Journal of Crystal Growth, 2006, 289(2): 708-714.
[13] YU D Y, LI H.Numerical simulation of thermal performance of GaAs-metal-organic chemical vapor deposition reactor based on 36 × 4 inches' wafers[J]. Crystal Research and Technology, 2022, 57(5): 2100185.
[14] YU D Y, SHEN S N, LI H, et al.Design optimization of gas distribution system for large-scale capacity GaAs-MOCVD[J]. Crystal Research and Technology, 2023, 58(11): 2300186.
[15] MAZUMDAR S, LOWRY S A.The importance of predicting rate-limited growth for accurate modeling of commercial MOCVD reactors[J]. Journal of Crystal Growth, 2001, 224(1/2): 165-174.
[16] REID R C, PRAUSNITZ J M, POLING B E.The properties of gases and liquids[M]. United States: McGraw-Hill Book Company, 1987: 586.
[17] FERON O, SUGIYAMA M, ASWAMETHAPANT W, et al. MOCVD of InGaAsP, InGaAs and InGaP over InP and GaAs substrates: distribution of composition and growth rate in a horizontal reactor[J]. Applied Surface Science, 2000, 159/160: 318-327.
[18] SUGIYAMA M, KUSUNOKI K, SHIMOGAKI Y, et al. Kinetic studies on thermal decomposition of MOVPE sources using fourier transform infrared spectroscopy[J]. Applied Surface Science, 1997, 117/118: 746-752.
[19] MOUNTZIARIS T J, JENSEN K F.Gas-phase and surface reaction mechanisms in MOCVD of GaAs with trimethyl-gallium and arsine[J]. Journal of the Electrochemical Society, 1991, 138(8): 2426-2439.
[20] MITROVIC B, GURARY A, QUINN W.Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling[J]. Journal of Crystal Growth, 2007, 303(1): 323-329.
[21] YANG C C, CHI G C, HUANG C K, et al.The improvement of GaN epitaxial layer quality by the design of reactor chamber spacing[J]. Journal of Crystal Growth, 1999, 200(1/2): 32-38.
[1] 闫超, 张涛, 贾子朝, 成成, 赵国华. 电子束熔炼用水冷铜坩埚研制[J]. 真空, 2024, 61(2): 78-85.
[2] 何天一, 岳向吉, 张志军, 巴德纯, 冯晓荣, 杨帆. 等螺距螺杆真空泵内气体流动的数值模拟研究*[J]. 真空, 2024, 61(1): 52-57.
[3] 邢银龙, 吴杰峰, 裴仕伦, 刘志宏, 李波, 刘振飞, 马建国. 船形高频腔壳体成型工艺研究*[J]. 真空, 2023, 60(6): 78-83.
[4] 李平川, 许丽, 赵杰, 张帆, 熊思维, 简毅, 张正浩, 唐德礼. 微型化阳极层推力器数值模拟与性能实验*[J]. 真空, 2023, 60(4): 36-41.
[5] 刘胜, 崔寓淏, 窦仁超, 师立侠, 孙立臣, 任国华, 闫荣鑫. 真空试验压力变化数值模拟研究[J]. 真空, 2022, 59(3): 12-15.
[6] 王军伟, 龚洁, 丁文静, 徐靖皓, 顾苗, 张立明. 基于动网格的空间快速减压过程流场数值模拟与分析*[J]. 真空, 2022, 59(2): 32-37.
[7] 李成明, 苏宁, 李琳, 姚威振, 杨少延. 一种垂直递变流速氢化物气相外延(HVPE)反应腔流场分析及大尺寸材料生长*[J]. 真空, 2021, 58(2): 1-5.
[8] 朱志鹏, 秦彬玮, 张英莉, 岳向吉, 巴德纯. 稀薄气体流动的粒子图像测速实验研究*[J]. 真空, 2021, 58(1): 38-44.
[9] 孔源, 张海鸥, 高建成, 陈曦, 王桂兰. 金属激光熔化沉积过程双时间步长法多尺度物理耦合场的数值模拟*[J]. 真空, 2020, 57(4): 77-84.
[10] 苏天一, 张志军, 韩晶雪. 应用二维轴对称模型的微波真空干燥数值模拟*[J]. 真空, 2020, 57(4): 60-65.
[11] 赵宇辉, 赵吉宾, 王志国, 王福雨. Inconel 625镍基高温合金激光增材制造内应力控制方式研究*[J]. 真空, 2020, 57(3): 73-79.
[12] 邓文宇, 段永利, 齐丽君, 孙宝玉. 单侧涡旋干式真空泵内气体流动的CFD模拟[J]. 真空, 2019, 56(4): 53-58.
[13] 李 琳 , 李成明 , 杨功寿 , 胡西多 , 杨少延 , 苏 宁 . 三层热壁金属有机化学气相外延流场计算机模拟[J]. 真空, 2019, 56(1): 34-38.
[14] 王晓冬, 吴虹阅, 张光利, 李 赫, 孙 浩, 董敬亮, TU Jiyuan. 计算流体力学在真空技术中的应用[J]. 真空, 2018, 55(6): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .