欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (5): 74-79.doi: 10.13385/j.cnki.vacuum.2024.05.10

• 测量与控制 • 上一篇    下一篇

碳纳米管与氧化锌纳米棒的场发射低压传感特性研究*

彭文广, 涂友情, 陈贵滔, 钱维金, 董长昆   

  1. 温州大学 温州市微纳光电器件重点实验室,浙江 温州 325035
  • 收稿日期:2024-05-06 出版日期:2024-09-25 发布日期:2024-10-10
  • 通讯作者: 董长昆,教授。
  • 作者简介:彭文广(1998-),男,湖南省衡阳市人,硕士。
  • 基金资助:
    *国家自然科学基金(62374118)

Comparative Study of Low Pressure Sensing Performance for Carbon Nanotube and Zinc Oxide Nanorod Field Emitters

PENG Wen-guang, TU You-qing, CHEN Gui-tao, QIAN Wei-jin, DONG Chang-kun   

  1. Wenzhou Key Laboratory of Micro-nano Optoelectronic Devices, Wenzhou University, Wenzhou 325035, China
  • Received:2024-05-06 Online:2024-09-25 Published:2024-10-10

摘要: 开发了一种基于气体吸附的场发射低压气体传感技术,通过化学气相沉积(CVD)直接在镍合金基底上制备了碳纳米管(CNT)阴极,应用水热法制备了ZnO纳米棒阴极和Al-N共掺杂ZnO纳米棒阴极(结合CVD法制备),然后对比研究了CNT与ZnO的场发射与低压氮气传感性能。结果表明:CNT阴极具有较好的场发射性能,开启场强为1.99 V/μm,而ZnO纳米棒的开启场强达到了14.9 V/μm;通过Al-N掺杂,ZnO纳米棒的场发射性能显著改善,开启场强降至8.9 V/μm;在10-4~10-7 Pa区间内,CNT阴极的低压N2传感效应最好,10-4 Pa下5 min内传感电流增幅达到350%;ZnO纳米棒几乎没有传感效应,而Al-N掺杂ZnO纳米棒展示了良好的传感特性,表明掺杂增加了活性位点,有效改善了ZnO材料的场发射低压气体传感性能。

关键词: 场发射, 碳纳米管, 氧化锌, 低压, N2传感

Abstract: A field emission low pressure gas sensing technique based on gas adsorption effects was developed. In this work, CNTs were grown directly on Ni alloy substrates by thermal chemical vapor deposition (CVD) method, ZnO nanorodes were prepared by the hydrothermal method, and the Al-N co-doped ZnO nanorodes were further synthesized by CVD. Then the field emission and low pressure N2 sensing performances were investigated for CNT and ZnO nanorode field emitters. The results show that CNT emitters present good field emission performance with the turn-on field of 1.99 V/μm, while ZnO emitters show higher turn-on field of 14.9 V/μm. With the doping of Al-N elements, the field emission performance is improved significantly with the turn-on field of 8.9 V/μm. In the pressure range of 10-4-10-7 Pa, the CNT cathodes demonstrate best sensing behavior, and the sensing current rises up to 350% within 5 min test under N2 pressure of 10-4 Pa. The pristine ZnO emitters show almost no sensing effect, but Al-N co-doped ZnO emitters display decent sensing behavior, indicating that Al-N doping effectively improves the gas sensing performance resulting from the addition of active sites on the ZnO emitter.

Key words: field emission, carbon nanotube, zinc oxide, low pressure, N2 sensing

中图分类号:  TP212;TB772;TB383

[1] SU J, GUO D Z, XING Y J, et al.Improved field emission properties of MgO-nanoparticle-doped carbon nanotube films and their application in miniature vacuum gauges[J]. Physica Status Solidi(a),2013,210(2):349-355.
[2] MEYYAPPAN M.Carbon nanotube-based chemical sensors[J]. Small, 2016, 12(16): 2118-2129.
[3] SEIYAMA T, FUJIISHI K, NAGATANI M, et al.A new detector for gaseous components using zinc oxide thin films[J]. Journal of the Society of Chemical Industry Japan, 1963, 66(5): 652-655.
[4] HOSSEINI Z S, MORTEZAALI A.Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures[J]. Sensors and Actuators B: Chemical, 2015, 207: 865-871.
[5] 王杰, 康颂, 董长昆.微型碳纳米管低压传感器工作性能研究[J].真空, 2021, 58(1): 1-5.
[6] 康颂, 董长昆, 张纯. 基于多壁碳纳米管场发射与吸附原理的压力传感技术研究[J]. 真空与低温, 2019, 25(4): 237-242.
[7] 董长昆, 康颂, 何剑峰, 等. 基于碳纳米管场发射的新型压力传感技术[C]//中国电子学会真空电子学分会,微波电真空器件国家级重点实验室.中国电子学会真空电子学分会第二十一届学术年会论文集.温州大学微纳结构与光电器件研究所, 2018: 846.
[8] NILSSON L, GROENING O, EMMENEGGER C, et al.Scanning field emission from patterned carbon nanotube films[J]. Applied Physics Letters, 2000, 76(15): 2071-2073.
[9] LEE J, JUNG Y, SONG J, et al.High-performance field emission from a carbon nanotube carpet[J]. Carbon, 2012, 50(10): 3889-3896.
[10] DRESSELHAUS M S, DRESSELHAUS G, JORIO A.Raman spectroscopy of carbon nanotubes in 1997 and 2007[J]. The Journal of Physical Chemistry C, 2007, 111(48): 17887-17893.
[11] DRESSELHAUS M S, JORIO A, HOFMANN M, et al.Perspectives on carbon nanotubes and graphene Raman spectroscopy[J]. Nano Letters, 2010, 10(3): 751-758.
[12] SAITO R, HOFMANN M, DRESSELHAUS G, et al.Raman spectroscopy of graphene and carbon nanotubes[J]. Advances in Physics, 2011, 60(3): 413-550.
[13] KAYASTHA V K, ULMEN B, YAP Y K.Effect of graphitic order on field emission stability of carbon nanotubes[J]. Nanotechnology, 2007, 18(3): 035206.
[14] ELETSKII A V, BOCHAROV G S.Emission properties of carbon nanotubes and cathodes on their basis[J]. Plasma Sources Science and Technology, 2009, 18(3): 034013.
[15] 康颂. 基于场发射原理的碳纳米管真空系统压力传感技术研究[D]. 温州: 温州大学, 2019.
[16] DONG C K, LUO H J, CAI J Q, et al.Hydrogen sensing characteristics from carbon nanotube field emissions[J]. Nanoscale, 2016,8(10): 5599-5604.
[17] GONZÁLEZ-BERRÍOS A, PIAZZA F, MORELL G. Numerical study of the electrostatic field gradients present in various planar emitter field emission configurations relevant to experimental research[J]. Journal of Vacuum Science & Technology B, 2005, 23(2): 645-648.
[18] DEAN K A, CHALAMALA B R.The environmental stability of field emission from single-walled carbon nanotubes[J]. Applied Physics Letters, 1999, 75(19): 3017-3019.
[19] SEMET V, BINH V T, VINCENT P, et al.Field electron emission from individual carbon nanotubes of a vertically aligned array[J]. Applied Physics Letters, 2002, 81(2): 343-345.
[20] PURCELL S T, VINCENT P, JOURNET C, et al.Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current[J]. Physical Review Letters, 2002, 88(10): 105502.
[1] 陈亚威, 董明亮, 钱维金, 涂友情, 黄卫军, 董长昆. 不同衬底生长氧化锌纳米棒阵列及其场发射性能的研究*[J]. 真空, 2023, 60(6): 32-36.
[2] 祝维, 陆群旭, 钱维金, 黄卫军, 董长昆. 新型碳纳米管微焦点电子源研究*[J]. 真空, 2022, 59(1): 48-53.
[3] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72-77.
[4] 王杰, 康颂, 董长昆. 微型碳纳米管低压传感器工作性能研究[J]. 真空, 2021, 58(1): 1-5.
[5] 杨威, 魏贤龙. 片上电子源的研究现状(二)*[J]. 真空, 2020, 57(1): 1-10.
[6] 杨威, 魏贤龙. 片上电子源的研究现状(一)*[J]. 真空, 2019, 56(6): 16-26.
[7] 何剑锋, 黄卫军, 董长昆. 新型同轴电极结构碳纳米管场发射电离计[J]. 真空, 2019, 56(6): 12-15.
[8] 李建, 童洪辉, 但敏, 金凡亚, 王坤, 陈伦江. 场致发射电子源的应用及其研究进展[J]. 真空, 2019, 56(3): 27-31.
[9] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10-14.
[10] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .