欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (6): 32-36.doi: 10.13385/j.cnki.vacuum.2023.06.05

• 薄膜 • 上一篇    下一篇

不同衬底生长氧化锌纳米棒阵列及其场发射性能的研究*

陈亚威, 董明亮, 钱维金, 涂友情, 黄卫军, 董长昆   

  1. 温州大学 温州市微纳光电器件重点实验室,浙江 温州 325035
  • 收稿日期:2023-04-17 出版日期:2023-11-25 发布日期:2023-11-27
  • 通讯作者: 钱维金,副研究员;董长昆,教授
  • 作者简介:陈亚威(1997-),男,江西省吉安市人,硕士。
  • 基金资助:
    *国家自然科学基金(61871292,61620106006); 浙江省教育厅一般科研项目(Y202248948)

Synthesis of ZnO Nanorod Arrays Grown on Different Substrates and Their Field Emission Performances

CHEN Ya-wei, DONG Ming-liang, QIAN Wei-jin, TU You-qing, HUANG Wei-jun, DONG Chang-kun   

  1. Wenzhou Key Lab of Micro-Nano Optoelectronic Devices, Wenzhou University, Wenzhou 325035, China
  • Received:2023-04-17 Online:2023-11-25 Published:2023-11-27

摘要: 采用低温水热法在五种不同基底上制备得到了氧化锌纳米棒阵列,通过SEM、TEM、XRD、EDS和XPS表征研究了所得产物的微观形貌和元素组成,并对不同基底生长的氧化锌纳米棒阵列进行了场发射性能和附着力测试。结果表明:硅片、导电玻璃、镍片、不锈钢和镍钛合金上生长的氧化锌纳米棒样品的开启电场依次升高;由于氧化锌纳米棒与硅基底之间具有更好的附着性能,硅片基底制备的氧化锌纳米棒场发射性能最好,并显示出最好的发射稳定性,在电流密度0.5mA/cm2下持续工作15h时,其电流波动小于10%。

关键词: 水热法, 基底, 氧化锌纳米棒阵列, 场发射, 附着力

Abstract: Zinc oxide nanorod arrays were prepared on five different substrates using low-temperature hydrothermal method, and the microstructure and elemental composition of the products were characterized by SEM, TEM, XRD, EDS, and XPS. The field emission (FE) properties of zinc oxide nanorod arrays grown on different substrates were investigated. The results show that the turn-on fields of samples grown on Si, conductive glass, nickel, stainless steel, and nickel titanium alloy increase in turn. Attributing to the better adhesion between zinc oxide nanorods and the Si substrate, the samples grown on Si substrate have the best FE performance and the best emission stability, with a current fluctuation less than 10% under the current density of 0.5mA/cm2 in DC mode for 15 h.

Key words: hydrothermal method, substrate, zinc oxide nanorod array, field emission, adhesion

中图分类号:  TP212;TB772;TQ127

[1] CHEN S, CHEN J T, LIU J L, et al.The effect of high- temperature oxygen annealing on field emission from ZnO nanowire arrays[J]. Applied Surface Science, 2015, 357: 413-416.
[2] KUMAR S, SAHARE P, KUMAR S.Optimization of the CVD parameters for ZnO nanorods growth: its photoluminescence and field emission properties[J]. Materials Research Bulletin, 2018, 105: 237-245.
[3] FAN Q, LI D, LI J, et al.Structure and piezoelectricity properties of V-doped ZnO thin films fabricated by sol-gel method[J]. Journal of Alloys and Compounds, 2020, 829: 154483.
[4] BUI Q C, SALEM B, ROUSSEL H, et al.Effects of thermal annealing on the structural and electrical properties of ZnO thin films for boosting their piezoelectric response[J]. Journal of Alloys and Compounds, 2021, 870: 159512.
[5] YOU H L, WU Z, JIA Y M, et al.High-efficiency and mechano- /photo-bi-catalysis of piezoelectric-ZnO@photoelectric-TiO2 core-shell nanofibers for dye decomposition[J]. Chemosphere, 2017, 183: 528-535.
[6] YI Z, LI X, WU H, et al.Fabrication of ZnO@Ag3PO4 core- shell nanocomposite arrays as photoanodes and their photoelectric properties[J]. Nanomaterials, 2019, 9(9): 1254.
[7] ZHAO S K, SHEN Y B, YAN X X, et al.Complex- surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor[J]. Sensors and Actuators B: Chemical, 2019, 286: 501-511.
[8] VANALAKAR S, GANG M, PATIL V, et al.Enhanced gas- sensing response of zinc oxide nanorods synthesized via hydrothermal route for nitrogen dioxide gas[J]. Journal of Electronic Materials, 2019, 48: 589-595.
[9] SUN X Y, LI Z M, FU Q, et al.The synthesis of long decorated ZnO column by chemical vapor deposition technology[J]. ECS Journal of Solid State Science and Technology, 2021, 10(6): 064003.
[10] CAO Y T, CAI Y, YAO C B, et al.The photoluminescence, field emission and femtosecond nonlinear absorption properties of Al-doped ZnO nanowires, nanobelts, and nanoplane-cone morphologies[J]. RSC Advances, 2019, 9(59): 34547-34558.
[11] NAGARAJU G, KO Y H, YU J S.Effect of diameter and height of electrochemically-deposited ZnO nanorod arrays on the performance of piezoelectric nanogenerators[J]. Materials Chemistry and Physics, 2015, 149: 393-399.
[12] TAYLOR C M, RAMIREZ-CANON A, WENK J, et al.Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts[J]. Journal of Hazardous Materials, 2019, 378: 120799.
[13] YOUNG S J, CHU Y L.Characteristics of field emitters on the basis of Pd-adsorbed ZnO nanostructures by photochemical method[J]. ACS Applied Nano Materials, 2021, 4(3): 2515-2521.
[14] LV Y Y, ZHANG Z Y, YAN J F, et al.Al doping influences on fabricating ZnO nanowire arrays: enhanced field emission property[J]. Ceramics International, 2018, 44(7): 7454-7460.
[15] LI M J, HUANG W J, QIAN W J, et al.Controllable Ag nanoparticle coated ZnO nanorod arrays on an alloy substrate with enhanced field emission performance[J]. RSC Advances, 2017, 7(74): 46760-46766.
[16] QIAN W J, CAO M X, XIE F, et al.Thermo- electrochemical cells based on carbon nanotube electrodes by electrophoretic deposition[J]. Nano-micro Letters, 2016, 3: 240-246.
[17] ALSHEHRI N A, LEWIS A R, PLEYDELL-PEARCE C, et al.Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications[J]. Journal of Saudi Chemical Society, 2018, 22(5): 538-545.
[18] MOULAHI A, SEDIRI F.ZnO nanoswords and nanopills: hydrothermal synthesis, characterization and optical properties[J]. Ceramics International, 2014, 40(1): 943-950.
[19] ZHA R, NADIMICHERLA R, GUO X.Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions[J]. Journal of Materials Chemistry A, 2015, 12: 6565-6574.
[20] LAI L W, LEE C T.Investigation of optical and electrical properties of ZnO thin films[J]. Materials Chemistry and Physics, 2008, 110(2/3): 393-396.
[21] JEONG S, HA Y G, MOON J, et al.Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin‐film transistors[J]. Advanced Materials, 2010, 22(12): 1346-1350.
[22] LI M J, LUO H J, QIAN W J, et al.Catalyst free N-doped carbon nanotube arrays based on a ZnO nanorod template with high performance field emission[J]. Journal of Materials Chemistry C, 2019, 7(28): 8730-8736.
[1] 方久康, 董淑宏. 基于分子动力学方法模拟石墨烯膜剥离行为*[J]. 真空, 2023, 60(5): 60-65.
[2] 彭波, 袁秋, 孟晓敏. 离子溅射仪油雾污染对溅射基底的影响[J]. 真空, 2023, 60(4): 13-17.
[3] 秦丽丽, 董茂进, 冯煜东, 韩仙虎, 蔡宇宏, 王毅, 李小金, 马凤英. 超高水氧阻隔膜研究进展*[J]. 真空, 2023, 60(1): 23-29.
[4] 祝维, 陆群旭, 钱维金, 黄卫军, 董长昆. 新型碳纳米管微焦点电子源研究*[J]. 真空, 2022, 59(1): 48-53.
[5] 王杰, 康颂, 董长昆. 微型碳纳米管低压传感器工作性能研究[J]. 真空, 2021, 58(1): 1-5.
[6] 杨威, 魏贤龙. 片上电子源的研究现状(二)*[J]. 真空, 2020, 57(1): 1-10.
[7] 杨威, 魏贤龙. 片上电子源的研究现状(一)*[J]. 真空, 2019, 56(6): 16-26.
[8] 何剑锋, 黄卫军, 董长昆. 新型同轴电极结构碳纳米管场发射电离计[J]. 真空, 2019, 56(6): 12-15.
[9] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .