欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (2): 91-99.doi: 10.13385/j.cnki.vacuum.2025.02.14

• 真空冶金与热工 • 上一篇    下一篇

磷对镍基高温合金铸态组织和力学性能的影响*

陈明1, 李相材2, 张晓敏2, 黄烁2, 王冲2, 胡军1   

  1. 1.东北大学 轧制技术及连轧自动化国家重点实验室,辽宁 沈阳 110819;
    2.北京钢研高纳科技股份有限公司,北京 100081
  • 收稿日期:2024-12-24 出版日期:2025-03-25 发布日期:2025-03-24
  • 通讯作者: 胡军,研究员。
  • 作者简介:陈明(1999-),男,贵州毕节人,硕士研究生。
  • 基金资助:
    * 国家重点研发计划(2022YFB3705101)

Effect of P on the as Cast Microstructure and Mechanical Properties of Nickel Based Superalloy

CHEN Ming1, LI Xiangcai2, ZHANG Xiaomin2, HUANG Shuo2, WANG Chong2, HU Jun1   

  1. 1. The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China;
    2. CISRI-GAONA Co., Ltd., Beijing 100081, China
  • Received:2024-12-24 Online:2025-03-25 Published:2025-03-24

摘要: 采用真空感应熔炼和保护气氛电渣重熔工艺制备了一系列不同磷(P)含量的铸态高温合金。通过光学显微镜、扫描电子显微镜、电子探针、维氏硬度计和拉伸试验机等,系统地分析了P元素对合金微观组织和力学性能的影响。结果表明,不同P含量下铸态合金的晶粒组织和γ'相无显著变化;随着P含量的增加,合金晶界处碳化物密度增加,且碳化物的形态从点状转变为短棒状;P元素在晶界偏聚使得晶界能降低,碳化物临界形核尺寸减小,因而促进了碳化物的析出;随着P含量增加,合金硬度、冲击韧性和抗拉强度提升,但断后伸长率下降;晶界碳化物能够有效阻碍裂纹的沿晶扩展,使裂纹转向晶内,从而显著提高了合金的综合力学性能。

关键词: 镍基高温合金, 磷元素, 真空感应熔炼, 铸态微观组织, 力学性能

Abstract: A series of nickel based superalloy samples with different P contents were prepared by vacuum induction melting and atmosphere protection electro slag remelting. The effect of P element on the microstructure and mechanical properties of the alloy was systematically analyzed using advanced characterization techniques such as optical microscopy, scanning electron microscopy, electron probe microanalysis, Vickers hardness tester, and tensile testing machine. The results show that the grain structure and γ' phase of the as cast alloy with different P contents have no significant change. With the increase of P content, the density of carbides at the grain boundaries increases, and the morphology of carbides changes from point like to short rod-shaped. The segregation of P element at grain boundaries reduces grain boundary energy, decreases the critical nucleus size for carbide, thus promoting the precipitation of carbides. In addition, as the P content increasing, the hardness, impact toughness, and tensile strength of the alloy increase, while the elongation decreases. Carbides at grain boundaries can effectively hinder the propagation of cracks, causing them to deflect and shift from the grain boundaries to the interior of the crystal, thereby significantly improving the comprehensive mechanical properties of the alloy.

Key words: nickel based superalloy, P element, vacuum induction melting, cast microstructure, mechanical property

中图分类号:  TG113

[1] OSADA T, NAGASHIMA N, GU Y, et al.Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy[J]. Scripta Materialia, 2011, 64(9): 892-895.
[2] UTADA S, SASAKI R, REED R C, et al.Overheating of Waspaloy: effect of cooling rate on flow stress behavior[J]. Materials & Design, 2022, 221: 110911.
[3] AMIRI A, BRUSCHI S, SADEGHI M H, et al.Investigation on hot deformation behavior of Waspaloy[J]. Materials Science and Engineering: A, 2013, 562: 77-82.
[4] DEVAUX A, GEORGES E, HÉRITIER P. Development of new C&W superalloys for high temperature disk applications[J]. Advanced Materials Research, 2011, 278: 405-410.
[5] KONG W, WANG Y, CHEN Y, et al.Investigation of uniaxial ratcheting fatigue behaviours and fracture mechanism of GH742 superalloy at 923 K[J]. Materials Science and Engineering: A, 2022, 831: 142173.
[6] ZHANG F, WANG C, WU Y, et al.Microstructural stability and mechanical properties of GH742 Ni-based wrought superalloy for turbine disk applications[J]. Materials Science and Engineering: A, 2022, 832: 142488.
[7] SHARMA J, NICOLAŸ A, DE GRAEF M, et al.Phase discrimination between δ and η phases in the new nickel-based superalloy VDM alloy 780 using EBSD[J]. Materials Characterization, 2021, 176: 111105.
[8] SHARGHI-MOSHTAGHIN R, ASGARI S.The influence of thermal exposure on the γ′ precipitates characteristics and tensile behavior of superalloy in-738LC[J]. Journal of Materials Processing Technology, 2004, 147(3): 343-350.
[9] THESKA F, STREET S R, LISON-PICK M, et al.Grain boundary microstructure-property relationships in the cast & wrought Ni-based superalloy René 41 with boron and carbon additions[J]. Acta Materialia, 2023, 258: 119235.
[10] ZHENG L, XU T, DENG Q, et al.Experimental study on the characteristic of grain-boundary segregation of phosphorus in Ni-base superalloy[J]. Materials Letters, 2008, 62(1): 54-56.
[11] WANG C, GUO Y, GUO J, et al.Investigation and improvement on structural stability and stress rupture properties of a Ni-Fe based alloy[J]. Materials & Design, 2015, 88: 790-798.
[12] ANTONOV S, DESPRÉS A, MAYER C, et al. Boron trapping at dislocations in an additively manufactured polycrystalline superalloy[J]. Materialia, 2023, 30: 101801.
[13] STINVILLE J C, GALLUP K, POLLOCK T M.Transverse creep of nickel-base superalloy bicrystals[J]. Metallurgical and Materials Transactions A, 2015, 46: 2516-2529.
[14] CAO W, KENNEDY R L.The effect of phosphorous on mechanical properties of alloy 718[C]// International Symposium on Superalloys 718, 625, 706 and Various Derivatives. Pittsburgh, Pa ,1994: 463-477.
[15] LIAN X T, SUN W R, XIN X, et al.Effects of phosphorus on microstructure and mechanical properties in NiCr alloys[J].Materials Science Forum, 2018, 913:141-149.
[16] SUN W R, GUO S R, LEE J H, et al.Effects of phosphorus on the δ-Ni3Nb phase precipitation and the stress rupture properties in alloy 718[J]. Materials Science and Engineering: A, 1998, 247(1-2): 173-179.
[17] LIU X, DONG J, TANG B, et al.Investigation of the abnormal effects of phosphorus on mechanical properties of Inconel718 superalloy[J]. Materials Science and Engineering: A, 1999, 270(2): 190-196.
[18] WANG M, DU J, DENG Q, et al.The effect of phosphorus on the microstructure and mechanical properties of ATI 718Plus alloy[J]. Materials Science and Engineering: A, 2015, 626: 382-389.
[19] WANG M, DU J, DENG Q, et al.Effect of the precipitation of the η-Ni3Al0.5Nb0.5 phase on the microstructure and mechanical properties of ATI 718Plus[J]. Journal of Alloys and Compounds, 2017, 701: 635-644.
[20] GUAN S, CUI C, YUAN Y, et al.The role of phosphorus in a newly developed Ni-Fe-Cr-based wrought superalloy[J]. Materials Science and Engineering: A, 2016, 662: 275-282.
[21] WANG C, ZHAO H, GUO Y, et al.Structural stability and mechanical properties of phosphorus modified Ni-Fe based superalloy GH984[J]. Materials Research Innovations, 2014, 18(s4): 324-330.
[22] ZHANG S, ZHANG A, CHANG L, et al.Effect of phosphorus on the stress rupture properties of In706 superalloy[J]. Materials Science and Engineering: A, 2019, 761: 137981.
[23] 马幼平, 崔春娟. 金属凝固理论及应用技术[M]. 北京:冶金工业出版社, 2015.
[24] ZHANG S, WU Y, LI Y, et al.Effect of stabilizing treatment on microstructure and stress rupture properties of phosphorus microalloyed Inconel 706 alloy[J]. Journal of Iron And Steel Research International, 2023, 30(8): 1613-1621.
[25] RONG L, WANG M, XING W, et al.Effects of cerium addition on the microstructure and stress rupture properties of a new nickel-based cast superalloy[J]. Journal of Materials Science & Technology, 2023, 159: 112-124.
[26] CAO W D, KENNEDY R L.Phosphorus-boron interaction in nickel-base superalloys[J]. Superalloys 1996, 718: 625-706.
[27] YU L X, SUN Y R, SUN W R, et al.The influence of phosphorus on the microstructure and stress-rupture properties in a low thermal expansion superalloy[J]. Materials Science and Engineering: A, 2010, 527(4-5): 911-916.
[28] KUKSENKO V, PAREIGE C, GENEVOIS C, et al.Characterisation of Cr, Si and P distribution at dislocations and grain-boundaries in neutron irradiated Fe-Cr model alloys of low purity[J]. Journal of Nuclear Materials, 2013, 434(1-3): 49-55.
[29] XIAO Z, HE L, BAI X.First principle studies of effects of solute segregation on grain boundary strength in Ni-based alloys[J]. Journal of Alloys and Compounds, 2021, 874: 159795.
[30] SUN W R, GUO S R, LU D Z, et al.Effect of phosphorus on the microstructure and stress rupture properties in an Fe-Ni-Cr base superalloy[J]. Metallurgical and Materials Transactions A, 1997, 28: 649-654.
[1] 张向军, 李天瑞, 吴文平, 杨永, 陈志强, 徐勇, 卢勇. 微量合金元素对Q355B钢中夹杂物的影响*[J]. 真空, 2025, 62(2): 77-85.
[2] 徐萍. 镍基高温合金的熔炼方法研究[J]. 真空, 2025, 62(1): 72-77.
[3] 赵祯赟, 陈定君, 郭圆萌, 杨皓, 东帅, 孙铁生, 黄美东. 不同温度下氮化铬薄膜的疏水性能研究*[J]. 真空, 2024, 61(1): 27-33.
[4] 张万福, 叶超, 李强, 李军, 王德洪, 罗俊义. 低氧氮含量K417G镍基高温合金生产工艺[J]. 真空, 2023, 60(6): 66-70.
[5] 张凤祥, 马国宏, 万旭杰, 马秀萍, 吴柯汉, 张华霞. 真空浇注过程中高温合金锭表面气孔产生原因分析[J]. 真空, 2023, 60(4): 80-84.
[6] 刘洋, 张雅楠, 高晟元, 赵祯赟, 郑明昊, 黄美东. 多弧离子镀Zr/ZrN多层膜的力学性能研究*[J]. 真空, 2022, 59(5): 28-31.
[7] 宋静思, 左野, 应冰, 刘君, 冯骏骁, 滕龙, 李元露, 张哲魁. 真空感应熔炼炉主流结构及未来发展[J]. 真空, 2022, 59(4): 70-75.
[8] 吕乾乾, 孙振川, 周建军, 杨振兴, 陈瑞祥, 游慧杰. 低真空管道系统性能室内实验研究*[J]. 真空, 2021, 58(3): 7-12.
[9] 赵兴旺, 刘艳梅, 付和国, 史吉鹏, 关峰. TC4薄壁钛合金激光对接接头组织及力学性能研究*[J]. 真空, 2020, 57(4): 89-94.
[10] 赵宇辉, 赵吉宾, 王志国, 王福雨. Inconel 625镍基高温合金激光增材制造内应力控制方式研究*[J]. 真空, 2020, 57(3): 73-79.
[11] 陈 博, 杨 飞, 李建昌. 柔性薄膜材料疲劳失效研究[J]. 真空, 2019, 56(1): 20-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .