真空 ›› 2025, Vol. 62 ›› Issue (2): 91-99.doi: 10.13385/j.cnki.vacuum.2025.02.14
陈明1, 李相材2, 张晓敏2, 黄烁2, 王冲2, 胡军1
CHEN Ming1, LI Xiangcai2, ZHANG Xiaomin2, HUANG Shuo2, WANG Chong2, HU Jun1
摘要: 采用真空感应熔炼和保护气氛电渣重熔工艺制备了一系列不同磷(P)含量的铸态高温合金。通过光学显微镜、扫描电子显微镜、电子探针、维氏硬度计和拉伸试验机等,系统地分析了P元素对合金微观组织和力学性能的影响。结果表明,不同P含量下铸态合金的晶粒组织和γ'相无显著变化;随着P含量的增加,合金晶界处碳化物密度增加,且碳化物的形态从点状转变为短棒状;P元素在晶界偏聚使得晶界能降低,碳化物临界形核尺寸减小,因而促进了碳化物的析出;随着P含量增加,合金硬度、冲击韧性和抗拉强度提升,但断后伸长率下降;晶界碳化物能够有效阻碍裂纹的沿晶扩展,使裂纹转向晶内,从而显著提高了合金的综合力学性能。
中图分类号: TG113
[1] OSADA T, NAGASHIMA N, GU Y, et al.Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy[J]. Scripta Materialia, 2011, 64(9): 892-895. [2] UTADA S, SASAKI R, REED R C, et al.Overheating of Waspaloy: effect of cooling rate on flow stress behavior[J]. Materials & Design, 2022, 221: 110911. [3] AMIRI A, BRUSCHI S, SADEGHI M H, et al.Investigation on hot deformation behavior of Waspaloy[J]. Materials Science and Engineering: A, 2013, 562: 77-82. [4] DEVAUX A, GEORGES E, HÉRITIER P. Development of new C&W superalloys for high temperature disk applications[J]. Advanced Materials Research, 2011, 278: 405-410. [5] KONG W, WANG Y, CHEN Y, et al.Investigation of uniaxial ratcheting fatigue behaviours and fracture mechanism of GH742 superalloy at 923 K[J]. Materials Science and Engineering: A, 2022, 831: 142173. [6] ZHANG F, WANG C, WU Y, et al.Microstructural stability and mechanical properties of GH742 Ni-based wrought superalloy for turbine disk applications[J]. Materials Science and Engineering: A, 2022, 832: 142488. [7] SHARMA J, NICOLAŸ A, DE GRAEF M, et al.Phase discrimination between δ and η phases in the new nickel-based superalloy VDM alloy 780 using EBSD[J]. Materials Characterization, 2021, 176: 111105. [8] SHARGHI-MOSHTAGHIN R, ASGARI S.The influence of thermal exposure on the γ′ precipitates characteristics and tensile behavior of superalloy in-738LC[J]. Journal of Materials Processing Technology, 2004, 147(3): 343-350. [9] THESKA F, STREET S R, LISON-PICK M, et al.Grain boundary microstructure-property relationships in the cast & wrought Ni-based superalloy René 41 with boron and carbon additions[J]. Acta Materialia, 2023, 258: 119235. [10] ZHENG L, XU T, DENG Q, et al.Experimental study on the characteristic of grain-boundary segregation of phosphorus in Ni-base superalloy[J]. Materials Letters, 2008, 62(1): 54-56. [11] WANG C, GUO Y, GUO J, et al.Investigation and improvement on structural stability and stress rupture properties of a Ni-Fe based alloy[J]. Materials & Design, 2015, 88: 790-798. [12] ANTONOV S, DESPRÉS A, MAYER C, et al. Boron trapping at dislocations in an additively manufactured polycrystalline superalloy[J]. Materialia, 2023, 30: 101801. [13] STINVILLE J C, GALLUP K, POLLOCK T M.Transverse creep of nickel-base superalloy bicrystals[J]. Metallurgical and Materials Transactions A, 2015, 46: 2516-2529. [14] CAO W, KENNEDY R L.The effect of phosphorous on mechanical properties of alloy 718[C]// International Symposium on Superalloys 718, 625, 706 and Various Derivatives. Pittsburgh, Pa ,1994: 463-477. [15] LIAN X T, SUN W R, XIN X, et al.Effects of phosphorus on microstructure and mechanical properties in NiCr alloys[J].Materials Science Forum, 2018, 913:141-149. [16] SUN W R, GUO S R, LEE J H, et al.Effects of phosphorus on the δ-Ni3Nb phase precipitation and the stress rupture properties in alloy 718[J]. Materials Science and Engineering: A, 1998, 247(1-2): 173-179. [17] LIU X, DONG J, TANG B, et al.Investigation of the abnormal effects of phosphorus on mechanical properties of Inconel718 superalloy[J]. Materials Science and Engineering: A, 1999, 270(2): 190-196. [18] WANG M, DU J, DENG Q, et al.The effect of phosphorus on the microstructure and mechanical properties of ATI 718Plus alloy[J]. Materials Science and Engineering: A, 2015, 626: 382-389. [19] WANG M, DU J, DENG Q, et al.Effect of the precipitation of the η-Ni3Al0.5Nb0.5 phase on the microstructure and mechanical properties of ATI 718Plus[J]. Journal of Alloys and Compounds, 2017, 701: 635-644. [20] GUAN S, CUI C, YUAN Y, et al.The role of phosphorus in a newly developed Ni-Fe-Cr-based wrought superalloy[J]. Materials Science and Engineering: A, 2016, 662: 275-282. [21] WANG C, ZHAO H, GUO Y, et al.Structural stability and mechanical properties of phosphorus modified Ni-Fe based superalloy GH984[J]. Materials Research Innovations, 2014, 18(s4): 324-330. [22] ZHANG S, ZHANG A, CHANG L, et al.Effect of phosphorus on the stress rupture properties of In706 superalloy[J]. Materials Science and Engineering: A, 2019, 761: 137981. [23] 马幼平, 崔春娟. 金属凝固理论及应用技术[M]. 北京:冶金工业出版社, 2015. [24] ZHANG S, WU Y, LI Y, et al.Effect of stabilizing treatment on microstructure and stress rupture properties of phosphorus microalloyed Inconel 706 alloy[J]. Journal of Iron And Steel Research International, 2023, 30(8): 1613-1621. [25] RONG L, WANG M, XING W, et al.Effects of cerium addition on the microstructure and stress rupture properties of a new nickel-based cast superalloy[J]. Journal of Materials Science & Technology, 2023, 159: 112-124. [26] CAO W D, KENNEDY R L.Phosphorus-boron interaction in nickel-base superalloys[J]. Superalloys 1996, 718: 625-706. [27] YU L X, SUN Y R, SUN W R, et al.The influence of phosphorus on the microstructure and stress-rupture properties in a low thermal expansion superalloy[J]. Materials Science and Engineering: A, 2010, 527(4-5): 911-916. [28] KUKSENKO V, PAREIGE C, GENEVOIS C, et al.Characterisation of Cr, Si and P distribution at dislocations and grain-boundaries in neutron irradiated Fe-Cr model alloys of low purity[J]. Journal of Nuclear Materials, 2013, 434(1-3): 49-55. [29] XIAO Z, HE L, BAI X.First principle studies of effects of solute segregation on grain boundary strength in Ni-based alloys[J]. Journal of Alloys and Compounds, 2021, 874: 159795. [30] SUN W R, GUO S R, LU D Z, et al.Effect of phosphorus on the microstructure and stress rupture properties in an Fe-Ni-Cr base superalloy[J]. Metallurgical and Materials Transactions A, 1997, 28: 649-654. |
[1] | 张向军, 李天瑞, 吴文平, 杨永, 陈志强, 徐勇, 卢勇. 微量合金元素对Q355B钢中夹杂物的影响*[J]. 真空, 2025, 62(2): 77-85. |
[2] | 徐萍. 镍基高温合金的熔炼方法研究[J]. 真空, 2025, 62(1): 72-77. |
[3] | 赵祯赟, 陈定君, 郭圆萌, 杨皓, 东帅, 孙铁生, 黄美东. 不同温度下氮化铬薄膜的疏水性能研究*[J]. 真空, 2024, 61(1): 27-33. |
[4] | 张万福, 叶超, 李强, 李军, 王德洪, 罗俊义. 低氧氮含量K417G镍基高温合金生产工艺[J]. 真空, 2023, 60(6): 66-70. |
[5] | 张凤祥, 马国宏, 万旭杰, 马秀萍, 吴柯汉, 张华霞. 真空浇注过程中高温合金锭表面气孔产生原因分析[J]. 真空, 2023, 60(4): 80-84. |
[6] | 刘洋, 张雅楠, 高晟元, 赵祯赟, 郑明昊, 黄美东. 多弧离子镀Zr/ZrN多层膜的力学性能研究*[J]. 真空, 2022, 59(5): 28-31. |
[7] | 宋静思, 左野, 应冰, 刘君, 冯骏骁, 滕龙, 李元露, 张哲魁. 真空感应熔炼炉主流结构及未来发展[J]. 真空, 2022, 59(4): 70-75. |
[8] | 吕乾乾, 孙振川, 周建军, 杨振兴, 陈瑞祥, 游慧杰. 低真空管道系统性能室内实验研究*[J]. 真空, 2021, 58(3): 7-12. |
[9] | 赵兴旺, 刘艳梅, 付和国, 史吉鹏, 关峰. TC4薄壁钛合金激光对接接头组织及力学性能研究*[J]. 真空, 2020, 57(4): 89-94. |
[10] | 赵宇辉, 赵吉宾, 王志国, 王福雨. Inconel 625镍基高温合金激光增材制造内应力控制方式研究*[J]. 真空, 2020, 57(3): 73-79. |
[11] | 陈 博, 杨 飞, 李建昌. 柔性薄膜材料疲劳失效研究[J]. 真空, 2019, 56(1): 20-26. |
|