欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (4): 59-63.doi: 10.13385/j.cnki.vacuum.2025.04.11

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Study on the Microstructure and Properties of BT22 Alloy Prepared by Vacuum Induction Magnetic Levitation Melting

LI Hongju, LIU Shibing, LIU Tianyu, ZHAO Jun, SHI Kun, LI Chongyang, LI Xinqi   

  1. State Key Laboratory of Advanced Casting Technologies, China Academy of Machinery Shenyang Research Institute of Foundry Co., Ltd., Shenyang 110022, China
  • Received:2024-11-07 Online:2025-07-25 Published:2025-07-24

Abstract: BT22 (Ti-5Al-5Mo-5V-1Cr-1Fe) alloy is widely used in the aerospace field because of its good strength, toughness and hardenability. Addressing the problems of crucible contamination and composition segregation present in traditional titanium alloy melting methods, BT22 alloy was prepared using a self-developed vacuum induction magnetic levitation melting furnace. The microstructure and mechanical properties of as-cast and HIP alloys were compared and analyzed. The results show that: the BT22 alloy prepared by vacuum induction magnetic levitation melting method has a uniform composition, and the as cast and hot isostatic pressing microstructures are typical Weinstein structures. After hot isostatic pressing, the β-Ti grains grow, and at the same time, the fine acicular α phases inside the grain and at the grain boundaries increase. At room temperature, the tensile strength of as cast BT22 alloy reaches 1 293 MPa±3 MPa, with the elongation of only 1%±0.5%. After hot isostatic pressing, it exhibits good comprehensive mechanical properties, with roomtemperature tensile strength of 1 067 MPa±1 MPa and the elongation of 10%±1%.

Key words: BT22, titanium alloy, vacuum, magnetic levitation melting, hot isostatic pressing

CLC Number:  TG146.2+3

[1] ZHAO Q Y, SUN Q Y, XIN S W, et al.High-strength titanium alloys for aerospace engineering applications: a review on melting-forging process[J]. Materials Science & Engineering A, 2022, 845: 143260.
[2] KANG L M, YANG C.A review on high-strength titanium alloys: microstructure, strengthening, and properties[J]. Advanced Engineering Materials, 2019, 21(8): 1801359.
[3] 史双喜. 航空用近β钛合金TC18热变形行为及组织演变研究[D]. 长沙:中南大学, 2023.
[4] SCHASTLIVAYA I A, LEONOV V P, TRET' YAKOV I V, et al. Influence of the composition of α-Titanium alloys on thermal conductivity[J]. Inorganic Materials: Applied Research, 2021, 12(6): 1494-1498.
[5] LEONOV V P, CHUDAKOV E V, MALINKINA Y Y, et al.Research of the peculiarities of ruthenium distribution in titanium α-, pseudo-α-, and pseudo-β-alloys and its effects on corrosion resistance[J]. Inorganic Materials: Applied Research, 2021, 12(6): 1450-1458.
[6] 赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙: 中南大学出版社, 2012.
[7] 陈玮, 刘运玺, 李志强. 高强β钛合金的研究现状与发展趋势[J]. 航空材料学报, 2020, 40(3): 63-76.
[8] KALIENNKO M S,ZHELNINA A V,POPOV A A.The decomposition of the metastable beta phase in high-strength titanium alloys VST5553, Ti-10V-2Fe-3Al, and BETA-21S[J]. Physics of Metals and Metallography, 2023, 124(9): 916-922.
[9] 宋越. 新型Ti-Cr-Mo-V-Al-Nb亚稳β钛合金强韧化匹配综合研究[D]. 北京:北京有色金属研究总院, 2021.
[10] 王安东, 相志磊, 周宗熠, 等. 高强β钛合金的研究现状与展望[J]. 钢铁钒钛, 2023, 44(6): 46-57.
[11] 韩栋, 张鹏省, 毛小南, 等. BT22钛合金及其大型锻件的研究进展[J]. 材料导报, 2010, 24(3): 46-50.
[12] 闫平, 王利, 赵军, 等. 高强度铸造钛合金的应用及发展[J]. 铸造, 2007,56(5): 451-454.
[13] 闫平. BT22高强度铸造钛合金组织与性能的研究[D]. 北京:机械科学研究总院, 2007.
[14] 彭强. 大规格BT22(Ti-5Al-5Mo-5V-1Cr-1Fe)钛合金铸锭生产工艺研究[D]. 西安:西安建筑科技大学, 2021.
[15] 吴晓东. 热处理升降温过程对BT22(TC18)钛合金组织性能的影响[D]. 西安:西安建筑科技大学, 2009.
[16] 宋静思, 张强, 左野, 等. 新式连续型真空冷坩埚感应凝壳炉[J]. 真空, 2023, 60(2): 73-77.
[17] 高婷, 赵亮, 马保飞, 等. 钛合金铸造技术现状及发展趋势[J]. 热加工工艺, 2014, 43(21): 5-11.
[18] 李伟东, 史许娜, 李晨阳, 等. 钛及钛合金铸锭制备工艺发展现状[J]. 钛工业进展, 2024, 41(5): 42-48.
[19] 王易山. 钛及钛合金熔炼技术发展现状[J]. 世界有色金属, 2020, (5): 10-12.
[20] 李明宇, 杨树峰, 刘威, 等. 真空自耗熔炼钛合金的偏析缺陷及控制研究进展[J]. 中国冶金, 2023, 33(9): 1-10.
[21] 雷文光, 赵永庆, 韩栋, 等. 钛及钛合金熔炼技术发展现状[J]. 材料导报, 2016, 30(5): 101-106,124.
[22] 李鸿举, 刘时兵, 赵军, 等. 高强高韧钛合金研究现状与进展[C]//铸造行业生产力促进中心. 2023中国铸造活动周论文集. 沈阳:高端装备铸造技术全国重点实验室, 2023.
[23] 王振玲, 于玉城, 李睿智, 等. 真空感应悬浮熔炼(TiC+TiB)增强钛基复合材料组织及高温拉伸性能研究[J]. 钢铁钒钛, 2021, 42(5): 54-61.
[24] 宋青竹, 董辉, 鄂东梅, 等. 电磁悬浮真空熔铸技术进展[J]. 真空, 2019, 56(6): 43-48.
[25] 孙志雨, 莫晓飞, 李亚峰, 等. 热等静压工艺参数对TA15钛合金组织及性能的影响[J]. 特种铸造及有色合金, 2023, 43(6): 804-807.
[26] 薛松海, 李重阳, 李雪辰, 等. 热处理工艺对铸造/激光增材制造复合制备Ti-6Al-4V合金组织和性能的影响[J]. 铸造, 2021, 70(7): 800-805.
[27] 金磊, 祝强, 赵军, 等. 热等静压在钛合金近净成形领域的发展及应用[J]. 铸造, 2019, 68(8): 885-891.
[1] SUN Xu, HU Jintao, CHENG Tiejun. Design of a Multi-Parameter Feedback-Based RPA Control Engine and Dynamic Arc Extinction Optimization for Vacuum Switching Devices [J]. VACUUM, 2025, 62(4): 7-8.
[2] WANG Jianguo, CHEN Chengquan, CHEN Lingdan, LI Jinjian, ZHANG Baofu. Research of the Linear Profile Rotor of Double Screw Vacuum Pump [J]. VACUUM, 2025, 62(4): 34-38.
[3] MA Yuanchen, LI Zhongren, WANG Ying, AI Chunjiang, SONG Jiaxing, ZHANG Wang, HU Yongjia. Optimization of Pre-Stressed Vessel Winding and Numerical Simulation for Hot Isostatic Pressing [J]. VACUUM, 2025, 62(4): 39-43.
[4] HU Linsong, JIN Ce. Research on Control Process of Ytterbium Atomic Vapor Density Prepared by Lanthanum Thermal Reduction [J]. VACUUM, 2025, 62(4): 44-48.
[5] ZHOU Mingxu, LI Jianchang. Effect of Graphite-Plate Thickness on the Temperature Field in Silicon Carbide Vacuum Sintering Furnace [J]. VACUUM, 2025, 62(4): 49-53.
[6] CEN Yanchao, AN Jie, SUN Yong, ZHANG Jun, LU Xingyu, LIU Hongwei, LEI Chengshuai. Research on Purity Control of Double-Vacuum Special Steel [J]. VACUUM, 2025, 62(4): 54-58.
[7] CHEN Ding, MA Hailing, LI Jing, XING Wang, MO Fan. Application of Vacuum Distillation Furnace in the Cathode Materials of Lithium-Ion Batteries for New Energy Vehicles [J]. VACUUM, 2025, 62(4): 64-68.
[8] NI Jun, GUO Teng, LI Canlun, HOU Kailin, LI Rongyi. The Surface Defect Detection Method of Vacuum Coating Production Based on Deep Learning [J]. VACUUM, 2025, 62(4): 69-74.
[9] CHEN Qiang, ZHANG Wei, DANG Tao, JIN Yangtao, CAO Xueping. Natural Vibration Characteristics and Seismic Response Analysis of Vacuum Assisted Steel-Concrete Arch Bridge [J]. VACUUM, 2025, 62(4): 81-88.
[10] MENG Tao, ZHENG Shihao, LIU Enze, TAN Zheng, NING Likui. Effect of Annealing Treatment on TCP Phase Precipitation in a Super Ferritic Stainless Steel Tube [J]. VACUUM, 2025, 62(3): 15-20.
[11] LIU Yihui, JIA Guocheng, WANG Weichao, MA Yi, QIAO Haibin, ZHAN Chunming. Failure Analysis of Pressure Leakage of Vacuum Melting ZTA15 Titanium Alloy Casting [J]. VACUUM, 2025, 62(3): 27-32.
[12] LI Zhengqing, LI Xiaojin, CHENG Yongjun, SUN Wenjun, YANG Jianbin, LIU Xiaowen, MA Fengying. Study on Volume Utilization Rate of Rotor Profiles of Roots Vacuum Pumps [J]. VACUUM, 2025, 62(3): 42-46.
[13] MENG Shaofei, SUN Changxin, LI Yuchen, ZHANG Yi, PANG Xudong. Research on Testing Assessment Method of the Pumping Performance for Large Parallel Vacuum Systems [J]. VACUUM, 2025, 62(3): 47-52.
[14] QIN Lulu, GAO Qiaofeng, ZHANG Shuai, LIU Ping, PAN Shouhu, ZHANG Kai, SAHNG Jiankang. Study on a Calibration Method of Nonlinear Pirani Vacuum Transmitter [J]. VACUUM, 2025, 62(3): 65-69.
[15] ZHAN Chunming, WANG Ligang, FAN Changlong, ZHANG PIxian, WANG Jie, E Dongmei, WANG Lingling, QIAO Zhonglu, LIU Shimeng, SONG Qingzhu. Thermal Conductivity Measurement and Stability Analysis of Vacuum Carbon Tube Furnace by Reference Sample Method [J]. VACUUM, 2025, 62(3): 76-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .