VACUUM ›› 2025, Vol. 62 ›› Issue (5): 53-57.doi: 10.13385/j.cnki.vacuum.2025.05.08
• Thin Film • Previous Articles Next Articles
ZHAO Ying1,2, LIU Yuandong3, LIN Bing2, ZHANG Hailong2
CLC Number: TB34
| [1] NIKI S, CONTRERAS M, REPINS I, et al.CIGS absorbers and processes[J]. Progress in Photovoltaics, 2010, 18(6):453-466. [2] POWALLA M, WITTE W, JACKSON P, et al.CIGS cells and modules with high eficiency on glass and flexible substrates[J]. IEEE Journal of Photovoltaics, 2014, 4(1):440-446. [3] KUSHIYA K.CIS-based thin-film PV technology in solar frontier K.K.[J]. Solar Energy Materials and Solar Cells, 2014, 122:309-313. [4] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al.Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J].IEEE Journal of Photovoltaics, 2019, 9(6):1863-1867. [5] 曲晶晶, 张林睿, 宋雪梅, 等. 铜锢镓硒基薄膜太阳电池的研究进展[J]. 稀有金属, 2020, 44(3): 313-327. [6] 丁苏莹, 吴子华, 谢华清, 等. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(S2): 1-7. [7] CHARGUI T, LMAI F, AL-HATTAB M, et al.Experimental and numerical study of the CIGS/CdS heterojunction solar cell[J]. Optical Materials, 2023, 140:113849. [8] WANG C J, HU Z J, LIU Y F, et al.Wide bandgap CIGS thin films via Ag-PDT to ameliorate the interface quality of CIGS/CdS heterojunction[J]. Journal of Materials Science:Materials in Electronics, 2022, 33(14):11055-11066. [9] CHENG S Q.High efficiency wide gap Cu(In,Ga)Se2 solar cells: Influence of buffer layer characteristics[J]. Heliyon, 2024, 10(17):e36965. [10] FUKUDA R, NISHIMURA T, YAMADA A.Experimental and theoretical EBIC analysis for grain boundary and CdS/Cu(In,Ga)Se2 heterointerface in Cu(In,Ga)Se2 solar cells[J]. Progress in Photovoltaics, 2023, 31(7):678-689. [11] WITTE W, HEMPEL. W, PAETEL S.Effects of sputtered InxSy buffer on CIGS with RbFpost-deposition treatment[J]. ECS Journal of Solid State Science and Technology, 2021, 10(5):1-9. [12] WACHAU A, SCHULTE J, AGOSTON P, et al.Sputtered Zn(O,S) buffer layers for CIGS solar modules-from lab to pilot production[J]. Progress in Photovoltaics, 2017, 25(8):696-705. [13] WITTE W, PAETEL S, MENNER R, et al.The application of sputtered gallium oxide as buffer for Cu(In,Ga)Se2 solar cells[J]. Physica Status Solidi:Rapid Research Letters, 2021, 15(9):2100180. [14] WITTE W, HEMPEL W, PAETEL S, et al.Influence of sputtered gallium oxide as buffer or high-resistive layer on performance of Cu(In,Ga)Se2-based solar cells[J]. Journal of Materials Research, 2022, 37:1825-1834. [15] LIU Y D, LI Y Z, TANG J L, et al.Efficiency enhancement of copper indium gallium selenide solar cells fabricated on polyimide foils with multiple metal layers[J]. Thin Solid Films, 2023, 767:139687. [16] LIU Y D, CAO Y Q, TANG J L, et al.Effects of alkali elements on copper indium gallium aluminum selenide flexible solar cells fabricated on polyimide substrates[J]. ACS Applied Materials & Interfaces, 2024, 16(36):48629-48638. [17] DUTTA D, MUKHERJEE S, UZHANSKY M, et al.Cross-field optoelectronic modulation via inter-coupled ferroelectricity in 2D In2Se3[J]. NPJ 2D Materials and Applications, 2021, 5:81. [18] ZHU X F, LIU X C, ZHENG Q, et al.Effects of sputtering pressure and annealing temperature on the characteristics of indium selenide thin films[J]. Materials Research Express, 2023, 10:106403. [19] ZHANG W, SU Q, ZHANG B W, et al.α-In2Se3 nanostructure-based photodetectors for tunable and broadband response[J]. ACS Applied Nano Materials, 2023, 6(10):8795-8803. [20] KKANCHAN K, SAHU A, KUMAR B.Numerical simulation of copper indium gallium diselenide solar cell with ultra-thin BaSi2 back surface field layer using the non-toxic In2Se3buffer layer[J]. Silicon, 2022, 14:12675-12682. [21] GORDILLO G, CALDERON C.CIS thin film solar cells with evaporated InSe buffer layers[J]. Solar Energy Materials and Solar Cells, 2023, 77(2):163-173. [22] TULENIN S S, MARKOV V F, MASKAEVA L N, et al.Deposition conditions, composition, and structure of chemically deposited In2Se3 films[J]. Russian Journal of Inorganic Chemistry, 2016, 61:488-495. [23] 林剑荣, 杜永权, 梁瑞斌,等. 氧化铟基透明导电薄膜的研究进展[J]. 材料研究与应用, 2022, 16(3):353-361. [24] NAJWA S, SHUHAIMI A, TALIK N A, et al.In-situ tuning of Sn doped In2O3(ITO)films properties by controlling deposition argon/oxygen flow[J]. Applied Surface Science, 2019, 479:1220-1225. [25] LIU J D.Manganese-doped transparent conductive magnetic indium oxide films integrated on flexible mica substrates with high mechanical durability[J]. Ceramics International, 2022, 48(3):3390-3396. [26] KHAN A, RAHMAN F, NONGJAI R, et al.Optical transmittance and electrical transport investigations of fedoped In2O3 thin films[J]. Applied Physics A:Materials Science & Processing, 2021, 127(5):339-349. [27] WANG G H, SHI C Y, ZHAO L, et al.Efficiency improvement of the heterojunction solar cell using an antireflection Hf-doped In2O3 thin film prepared via glancing angle magnetron sputtering technology[J]. Optical Materials, 2020, 109:110323. |
| [1] | NI Jun, GUO Teng, LI Canlun, HE Hengyang, LI Rongyi. Surface Defect Detection Method of Spacecraft Flexible Thermal Control Coating Driven by Multidimensional Attention Mechanism [J]. VACUUM, 2025, 62(5): 44-52. |
| [2] | LUO Junwen. Research on Key Technologies of Vacuum Magnetron Sputtering Double-Sided Copper Coating on Ultra-Thin Flexible Substrates [J]. VACUUM, 2025, 62(3): 53-57. |
| [3] | SUN Bingcheng, ZHANG Xianwang, ZHANG Jian. Study on the Effect of Radio Frequency Power on the Structure and Properties of ITO Films [J]. VACUUM, 2025, 62(2): 62-67. |
| [4] | WANG Song-lin, ZHANG Jian-fu, MI Gao-yuan, YIN Wan-hong, LIU Qing-long, ZHAO Hong-jun, ZHANG Xiang-ming. Design Method and Application of Wavelength Error Compensation for Multi-band Films [J]. VACUUM, 2024, 61(6): 7-14. |
| [5] | CHEN Yu-yun, WANG Xiao-xu, CHEN Yuan-ming, SHEN Yi, HUANG Rui. Study of Electrical Insulation Property of Magnetron Sputtered Silicon Oxide and Silicon Oxide/Silicon Nitride/Silicon Oxide Films [J]. VACUUM, 2024, 61(6): 15-20. |
| [6] | BAI Hao-yu, YAO Chun-long, DONG Ming, QIN Rui, BAI Yong-hao, WANG Yi-nan. Development of Ultra-High Steepness Edge Long Wave Pass Raman Filter [J]. VACUUM, 2024, 61(4): 12-16. |
| [7] | ZHAO Fan, XIANG Yan-xiong, ZOU Chang-wei, YU Yun-jiang, LIANG Feng. Application of Magnetron Sputtering Deposition Technology for (Cr,Ti,Al)N Coatings [J]. VACUUM, 2024, 61(4): 22-29. |
| [8] | JI Jian-chao, YAN Yue, HA En-hua. Effect of Deposition Parameters on Microstructure and Optical Properties of TiO2 Nanofilms [J]. VACUUM, 2024, 61(3): 57-62. |
| [9] | LIU Wen-li, LIU Xu, YIN Xiang. Development of Rectangular Planar Magnetic Control Target with Dynamic Magnetic Field [J]. VACUUM, 2023, 60(5): 47-50. |
| [10] | REN Dong-xue, SUN Xiao-jie, CHEN Lan-lan. Preparation and Properties of Functional PET Composite Films [J]. VACUUM, 2023, 60(4): 18-23. |
| [11] | ZHANG Yan-peng, CAO Zhi-qiang, FU Qiang, CAO Lei, LIU Xu. Study of the Influence of Process Parameters of Copper Coating Fabricated by Roll to Roll Machine on Electronic Property of Composite Current Collector [J]. VACUUM, 2023, 60(4): 8-12. |
| [12] | ZHANG Han-yan, ZHENG Dan-xu, SHEN Yi, CHEN Yu-yun. Research of Insulation of Silicon Oxide Film Produced by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2023, 60(2): 34-38. |
| [13] | FENG Gang, MENG Zheng, YANG Xue-dong, ZHANG Hao-yun, YU Gang, GAO Hui, WANG Wei-cai, SONG Meng, SUN Yong, KONG Zhuang, JIA Jin-sheng, WANG Hong. Measurement and Analysis of Light Transmittance and Shielding Coefficient of All Inorganic Solid-state Electrochromic Window [J]. VACUUM, 2023, 60(1): 13-16. |
| [14] | ZHANG Jian, QI Zhen-hua, LI Jian-hao, NIU Xia-bin, XU Quan-guo, ZONG Shi-qiang. Growth, Characterization of ITO Films Deposited by DC Magnetron Sputtering [J]. VACUUM, 2022, 59(6): 45-50. |
| [15] | ZHAO Qi, MAN Yu-yan, LI Su-ya, LI Song-yuan, LI Lin. Research on Performance Controlling Method of Fluorocarbon Nanostructured Film for Dry Reactors [J]. VACUUM, 2022, 59(6): 51-55. |
|