欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (5): 53-57.doi: 10.13385/j.cnki.vacuum.2025.05.08

• Thin Film • Previous Articles     Next Articles

Study on the Properties of Sputtered In2Se3 Buffer Layers

ZHAO Ying1,2, LIU Yuandong3, LIN Bing2, ZHANG Hailong2   

  1. 1. Sichuan Energy Investment Hydrogen Industry Investment Co., Ltd., Chengdu 610000, China;
    2. Southwest Petroleum University, Chengdu 610500, China;
    3. Beijing Academy of Science and Technology, Beijing 100089, China
  • Received:2024-12-12 Published:2025-09-29

Abstract: In order to explore a low-toxicity buffer layer material to replace the CdS buffer layer commonly used in Cu(In,Ga)Se2 (CIGS) solar cells, magnetron sputtering technology was used to prepare thin film materials based on In2Se3 targets. The effects of pure sputtering, oxygen-doped sputtering and post-annealing treatment on the stoichiometric ratio, band gap and transmittance characteristics of the films were systematically studied. The results show that the transmittance of In2Se3 films prepared by sputtering is very low. Although the transmittance of the films can be improved by sputtering doped with oxygen, the stoichiometric ratio of the films will be greatly affected. The effect of post-annealing treatment on the properties of the films is negligible. The performance of In2Se3 thin films prepared by magnetron sputtering technology is still difficult to meet the application requirements of buffer layer materials.

Key words: buffer layer, In2Se3, magnetron sputtering, band gap, transmittance

CLC Number:  TB34

[1] NIKI S, CONTRERAS M, REPINS I, et al.CIGS absorbers and processes[J]. Progress in Photovoltaics, 2010, 18(6):453-466.
[2] POWALLA M, WITTE W, JACKSON P, et al.CIGS cells and modules with high eficiency on glass and flexible substrates[J]. IEEE Journal of Photovoltaics, 2014, 4(1):440-446.
[3] KUSHIYA K.CIS-based thin-film PV technology in solar frontier K.K.[J]. Solar Energy Materials and Solar Cells, 2014, 122:309-313.
[4] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al.Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%[J].IEEE Journal of Photovoltaics, 2019, 9(6):1863-1867.
[5] 曲晶晶, 张林睿, 宋雪梅, 等. 铜锢镓硒基薄膜太阳电池的研究进展[J]. 稀有金属, 2020, 44(3): 313-327.
[6] 丁苏莹, 吴子华, 谢华清, 等. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(S2): 1-7.
[7] CHARGUI T, LMAI F, AL-HATTAB M, et al.Experimental and numerical study of the CIGS/CdS heterojunction solar cell[J]. Optical Materials, 2023, 140:113849.
[8] WANG C J, HU Z J, LIU Y F, et al.Wide bandgap CIGS thin films via Ag-PDT to ameliorate the interface quality of CIGS/CdS heterojunction[J]. Journal of Materials Science:Materials in Electronics, 2022, 33(14):11055-11066.
[9] CHENG S Q.High efficiency wide gap Cu(In,Ga)Se2 solar cells: Influence of buffer layer characteristics[J]. Heliyon, 2024, 10(17):e36965.
[10] FUKUDA R, NISHIMURA T, YAMADA A.Experimental and theoretical EBIC analysis for grain boundary and CdS/Cu(In,Ga)Se2 heterointerface in Cu(In,Ga)Se2 solar cells[J]. Progress in Photovoltaics, 2023, 31(7):678-689.
[11] WITTE W, HEMPEL. W, PAETEL S.Effects of sputtered InxSy buffer on CIGS with RbFpost-deposition treatment[J]. ECS Journal of Solid State Science and Technology, 2021, 10(5):1-9.
[12] WACHAU A, SCHULTE J, AGOSTON P, et al.Sputtered Zn(O,S) buffer layers for CIGS solar modules-from lab to pilot production[J]. Progress in Photovoltaics, 2017, 25(8):696-705.
[13] WITTE W, PAETEL S, MENNER R, et al.The application of sputtered gallium oxide as buffer for Cu(In,Ga)Se2 solar cells[J]. Physica Status Solidi:Rapid Research Letters, 2021, 15(9):2100180.
[14] WITTE W, HEMPEL W, PAETEL S, et al.Influence of sputtered gallium oxide as buffer or high-resistive layer on performance of Cu(In,Ga)Se2-based solar cells[J]. Journal of Materials Research, 2022, 37:1825-1834.
[15] LIU Y D, LI Y Z, TANG J L, et al.Efficiency enhancement of copper indium gallium selenide solar cells fabricated on polyimide foils with multiple metal layers[J]. Thin Solid Films, 2023, 767:139687.
[16] LIU Y D, CAO Y Q, TANG J L, et al.Effects of alkali elements on copper indium gallium aluminum selenide flexible solar cells fabricated on polyimide substrates[J]. ACS Applied Materials & Interfaces, 2024, 16(36):48629-48638.
[17] DUTTA D, MUKHERJEE S, UZHANSKY M, et al.Cross-field optoelectronic modulation via inter-coupled ferroelectricity in 2D In2Se3[J]. NPJ 2D Materials and Applications, 2021, 5:81.
[18] ZHU X F, LIU X C, ZHENG Q, et al.Effects of sputtering pressure and annealing temperature on the characteristics of indium selenide thin films[J]. Materials Research Express, 2023, 10:106403.
[19] ZHANG W, SU Q, ZHANG B W, et al.α-In2Se3 nanostructure-based photodetectors for tunable and broadband response[J]. ACS Applied Nano Materials, 2023, 6(10):8795-8803.
[20] KKANCHAN K, SAHU A, KUMAR B.Numerical simulation of copper indium gallium diselenide solar cell with ultra-thin BaSi2 back surface field layer using the non-toxic In2Se3buffer layer[J]. Silicon, 2022, 14:12675-12682.
[21] GORDILLO G, CALDERON C.CIS thin film solar cells with evaporated InSe buffer layers[J]. Solar Energy Materials and Solar Cells, 2023, 77(2):163-173.
[22] TULENIN S S, MARKOV V F, MASKAEVA L N, et al.Deposition conditions, composition, and structure of chemically deposited In2Se3 films[J]. Russian Journal of Inorganic Chemistry, 2016, 61:488-495.
[23] 林剑荣, 杜永权, 梁瑞斌,等. 氧化铟基透明导电薄膜的研究进展[J]. 材料研究与应用, 2022, 16(3):353-361.
[24] NAJWA S, SHUHAIMI A, TALIK N A, et al.In-situ tuning of Sn doped In2O3(ITO)films properties by controlling deposition argon/oxygen flow[J]. Applied Surface Science, 2019, 479:1220-1225.
[25] LIU J D.Manganese-doped transparent conductive magnetic indium oxide films integrated on flexible mica substrates with high mechanical durability[J]. Ceramics International, 2022, 48(3):3390-3396.
[26] KHAN A, RAHMAN F, NONGJAI R, et al.Optical transmittance and electrical transport investigations of fedoped In2O3 thin films[J]. Applied Physics A:Materials Science & Processing, 2021, 127(5):339-349.
[27] WANG G H, SHI C Y, ZHAO L, et al.Efficiency improvement of the heterojunction solar cell using an antireflection Hf-doped In2O3 thin film prepared via glancing angle magnetron sputtering technology[J]. Optical Materials, 2020, 109:110323.
[1] NI Jun, GUO Teng, LI Canlun, HE Hengyang, LI Rongyi. Surface Defect Detection Method of Spacecraft Flexible Thermal Control Coating Driven by Multidimensional Attention Mechanism [J]. VACUUM, 2025, 62(5): 44-52.
[2] LUO Junwen. Research on Key Technologies of Vacuum Magnetron Sputtering Double-Sided Copper Coating on Ultra-Thin Flexible Substrates [J]. VACUUM, 2025, 62(3): 53-57.
[3] SUN Bingcheng, ZHANG Xianwang, ZHANG Jian. Study on the Effect of Radio Frequency Power on the Structure and Properties of ITO Films [J]. VACUUM, 2025, 62(2): 62-67.
[4] WANG Song-lin, ZHANG Jian-fu, MI Gao-yuan, YIN Wan-hong, LIU Qing-long, ZHAO Hong-jun, ZHANG Xiang-ming. Design Method and Application of Wavelength Error Compensation for Multi-band Films [J]. VACUUM, 2024, 61(6): 7-14.
[5] CHEN Yu-yun, WANG Xiao-xu, CHEN Yuan-ming, SHEN Yi, HUANG Rui. Study of Electrical Insulation Property of Magnetron Sputtered Silicon Oxide and Silicon Oxide/Silicon Nitride/Silicon Oxide Films [J]. VACUUM, 2024, 61(6): 15-20.
[6] BAI Hao-yu, YAO Chun-long, DONG Ming, QIN Rui, BAI Yong-hao, WANG Yi-nan. Development of Ultra-High Steepness Edge Long Wave Pass Raman Filter [J]. VACUUM, 2024, 61(4): 12-16.
[7] ZHAO Fan, XIANG Yan-xiong, ZOU Chang-wei, YU Yun-jiang, LIANG Feng. Application of Magnetron Sputtering Deposition Technology for (Cr,Ti,Al)N Coatings [J]. VACUUM, 2024, 61(4): 22-29.
[8] JI Jian-chao, YAN Yue, HA En-hua. Effect of Deposition Parameters on Microstructure and Optical Properties of TiO2 Nanofilms [J]. VACUUM, 2024, 61(3): 57-62.
[9] LIU Wen-li, LIU Xu, YIN Xiang. Development of Rectangular Planar Magnetic Control Target with Dynamic Magnetic Field [J]. VACUUM, 2023, 60(5): 47-50.
[10] REN Dong-xue, SUN Xiao-jie, CHEN Lan-lan. Preparation and Properties of Functional PET Composite Films [J]. VACUUM, 2023, 60(4): 18-23.
[11] ZHANG Yan-peng, CAO Zhi-qiang, FU Qiang, CAO Lei, LIU Xu. Study of the Influence of Process Parameters of Copper Coating Fabricated by Roll to Roll Machine on Electronic Property of Composite Current Collector [J]. VACUUM, 2023, 60(4): 8-12.
[12] ZHANG Han-yan, ZHENG Dan-xu, SHEN Yi, CHEN Yu-yun. Research of Insulation of Silicon Oxide Film Produced by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2023, 60(2): 34-38.
[13] FENG Gang, MENG Zheng, YANG Xue-dong, ZHANG Hao-yun, YU Gang, GAO Hui, WANG Wei-cai, SONG Meng, SUN Yong, KONG Zhuang, JIA Jin-sheng, WANG Hong. Measurement and Analysis of Light Transmittance and Shielding Coefficient of All Inorganic Solid-state Electrochromic Window [J]. VACUUM, 2023, 60(1): 13-16.
[14] ZHANG Jian, QI Zhen-hua, LI Jian-hao, NIU Xia-bin, XU Quan-guo, ZONG Shi-qiang. Growth, Characterization of ITO Films Deposited by DC Magnetron Sputtering [J]. VACUUM, 2022, 59(6): 45-50.
[15] ZHAO Qi, MAN Yu-yan, LI Su-ya, LI Song-yuan, LI Lin. Research on Performance Controlling Method of Fluorocarbon Nanostructured Film for Dry Reactors [J]. VACUUM, 2022, 59(6): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .