欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (6): 15-20.doi: 10.13385/j.cnki.vacuum.2024.06.03

• Thin Film • Previous Articles     Next Articles

Study of Electrical Insulation Property of Magnetron Sputtered Silicon Oxide and Silicon Oxide/Silicon Nitride/Silicon Oxide Films

CHEN Yu-yun1, WANG Xiao-xu2, CHEN Yuan-ming1, SHEN Yi1, HUANG Rui3   

  1. 1. Guangdong Provincial Key Laboratory of Automotive Display and Touch Technologies, Shantou Goworld Display Technology Co., Ltd., Shantou 515041, China;
    2. Shantou Goworld Display (Plant II) Co., Ltd., Shantou 515041,China;
    3. Hanshan Normal University, Chaozhou 521000, China
  • Received:2024-01-23 Online:2024-11-25 Published:2024-11-29

Abstract: Electrical insulation property of magnetron sputtered silicon oxide (SiO2) and silicon oxide/silicon nitride (Si3N4)/silicon oxide (ONO) films were investigated. The insulation resistance of three batches of SiO2 and ONO films of 4.5 cm × 3.5 cm were tested. The results show that the ratio of fully-insulative ONO films is relatively higher and more stable. Compared with SiO2 single layer, the signal related to stretch motions of bridge oxygen (peak A) of ONO film is blue shifted, and the signal related to oxygen vacancies (peak B) or bending motions of non-bridge oxygen (peak C) is weaker than the signal related to bending motion of bridge oxygen (peak D). These structural features indicate that the atomic defects (such as oxygen vacancies and non-bridge oxygen) within ONO films are less than those within SiO2 films. Such differences are understood in terms that the addition of Si3N4 interlayer chemically interrupts the continuous growth of defects in SiO2 films. By quantifying the three parameters including position of peak A, the ratio of intensity of peak D to that of peak B, the ratio of intensity of peak D to that of peak C, the electrical insulation properties of SiO2 and ONO films can be evaluated non-destructively.

Key words: magnetron sputtering, silicon oxide, ONO stack, electrical insulation property, FTIR spectroscopy, non-destructive testing

CLC Number:  O484.1

[1] ALEXANDROVA S, SZEKERES A, HALOVA E, et al.Oxide and interface charges in thin SiO2 films thermally grown on RF plasma hydrogenated silicon[J]. Vacuum, 2004, 75(4): 301-305.
[2] HEUN S, KREMMER S, ERCOLANI D, et al. LEEM and XPEEM studies of C-AFM induced surface modifications of thermally grown SiO2[J]. Journal of Electron Spectroscopy and Related Phenomena, 2005,144-147:1163-1166.
[3] BARRANCO A, COTRINO J, YUBERO F, et al.Synthesis of SiO2 and SiOxCyHz thin films by microwave plasma CVD[J]. Thin Solid Films, 2001, 401(1-2): 150-158.
[4] BARRAECA D, GASPAROTTO A, MACCATO C, et al.A soft plasma enhanced-chemical vapor depositon process for the tailored synthesis of SiO2 films[J]. Thin Solid Films, 2008, 516(21): 7393-7399.
[5] 张栋, 柯培玲, 汪爱英,等. 用PECVD工艺制备功能装饰氧化硅薄膜的性能[J]. 材料研究学报, 2019, 33(6): 467-474.
[6] SHIN D, SONG H, LEE M, et al.Plasma-enhanced atomic layer deposition of low temperature silicon dioxide films using di-isopropylaminosilane as a precursor[J]. Thin Solid Films, 2018, 660(30): 572-577.
[7] ZHU Z, SIPPOLA P, YLIVAARA O M E, et al. Low-temperature plasma-enhanced atomic layer deposition of SiO2 using carbon dioxide[J]. Nanoscale Research Letters, 2019,14:55.
[8] 陈杰, 李俊, 赵金茹, 等. ALD氧化铝薄膜介电性能及其在硅电容器的应用[J]. 电子与封装, 2013, 13(9): 31-34.
[9] LEE C C, JAN D J.DC magnetron sputtering of Si to form SiO2 at low-energy ion beam[J]. Vacuum, 2006, 80(7): 693-697.
[10] TABATA A, MATSUNO N, SUZUOKI Y, et al.Optical properties and structure of SiO2 films prepared by ion-beam sputtering[J]. Thin Solid Films, 1996, 289(1-2): 84-89.
[11] 王新, 向嵘, 李野, 等. 氧化硅薄膜的制备和性质研究[J]. 微电子学, 2010, 40(3): 454-456.
[12] 朱勇, 顾培夫, 沈伟东, 等. 射频磁控反应溅射氮氧化硅薄膜的研究[J]. 光学学报, 2005, 25(4): 567-571.
[13] HE L N, XU J.Properties of amorphous SiO2 films prepared by reactive RF magnetron sputtering method[J]. Vacuum, 2002, 68(2): 197-202.
[14] 林泽伦, 马亚萍, 谷士鹏, 等. 高温合金上AlON/Al2O3复合绝缘层的制备及绝缘性能研究[J]. 电子元件与材料, 2021, 40(1): 6-10.
[15] 张丛春, 黄漫国, 梁晓波, 等. 双离子束溅射Al2O3薄膜高温绝缘特性的研究[J]. 电子元件与材料, 2021, 40(4): 311-315.
[16] BELL R J, DEAN P.Atomic vibrations in vitreous silica[J]. Discussions of the Faraday Society, 1970, 50: 55-61.
[17] PAI P G, CHAO S S, TAKAGI Y, et al.Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition[J]. Journal of Vacuum Science and Technology A, 1986, 4(3): 689-694
[18] HOEX B, PEETERS F J J, CREATORE M, et al. High-rate plasma-deposited SiO2 films for surface passivation of crystalline silicon[J]. Journal of Vacuum Science and Technology A, 2006, 24(5): 1823-1830.
[19] CHOI W K, CHOO C K, LU Y F.Electrical characterization of rapid thermal annealed radio frequency sputtered silicon oxide films[J]. Journal of Applied Physics, 1996, 80(10): 5837-5842.
[20] LISOVSKII I P, LITOVCHENKO V G, LOZINSKII V B, etal. IR study of short-range and local order in SiO2 and SiOx films[J]. Journal of Non-Crystalline Solids, 1995,187: 91-95.
[21] PRIMEAU N, VAUTEY C, LANGLET M.The effect of thermal annealing on aerosol-gel deposited SiO2 films: a FTIR deconvolution study[J]. Thin Solid Films, 1997, 310(1-2): 47-56.
[22] CHOI W K, CHOO C K, HAN K K, et al.Densification of radio frequency sputtered silicon oxide films by rapid thermal annealing[J]. Journal of Applied Physics, 1998, 83(4): 2308-2314.
[23] PLISKIN W A, LEHMAN H S.Structural evalution of silicon oxide films[J]. Journal of The Electrochemical Society, 1965, 112(10): 1013-1019.
[1] BAI Hao-yu, YAO Chun-long, DONG Ming, QIN Rui, BAI Yong-hao, WANG Yi-nan. Development of Ultra-High Steepness Edge Long Wave Pass Raman Filter [J]. VACUUM, 2024, 61(4): 12-16.
[2] ZHAO Fan, XIANG Yan-xiong, ZOU Chang-wei, YU Yun-jiang, LIANG Feng. Application of Magnetron Sputtering Deposition Technology for (Cr,Ti,Al)N Coatings [J]. VACUUM, 2024, 61(4): 22-29.
[3] JI Jian-chao, YAN Yue, HA En-hua. Effect of Deposition Parameters on Microstructure and Optical Properties of TiO2 Nanofilms [J]. VACUUM, 2024, 61(3): 57-62.
[4] LIU Wen-li, LIU Xu, YIN Xiang. Development of Rectangular Planar Magnetic Control Target with Dynamic Magnetic Field [J]. VACUUM, 2023, 60(5): 47-50.
[5] ZHANG Yan-peng, CAO Zhi-qiang, FU Qiang, CAO Lei, LIU Xu. Study of the Influence of Process Parameters of Copper Coating Fabricated by Roll to Roll Machine on Electronic Property of Composite Current Collector [J]. VACUUM, 2023, 60(4): 8-12.
[6] ZHANG Han-yan, ZHENG Dan-xu, SHEN Yi, CHEN Yu-yun. Research of Insulation of Silicon Oxide Film Produced by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2023, 60(2): 34-38.
[7] ZHANG Jian, QI Zhen-hua, LI Jian-hao, NIU Xia-bin, XU Quan-guo, ZONG Shi-qiang. Growth, Characterization of ITO Films Deposited by DC Magnetron Sputtering [J]. VACUUM, 2022, 59(6): 45-50.
[8] ZHAO Qi, MAN Yu-yan, LI Su-ya, LI Song-yuan, LI Lin. Research on Performance Controlling Method of Fluorocarbon Nanostructured Film for Dry Reactors [J]. VACUUM, 2022, 59(6): 51-55.
[9] XIN Xian-feng, LIU Lin-gen, LIN Guo-qiang, DONG Chuang, DING Wan-yu, ZHANG Shuang, WANG Qi-zhen, LI Jun, WAN Peng. Preparation and Properties of Zr55Cu30Al10Ni5 Amorphous Thin Films [J]. VACUUM, 2022, 59(5): 1-6.
[10] ZHANG Jian, LI Jian-hao, QI Zhen-hua. Effect of Process Parameters on SiC Film Properties under DC Magnetron Sputtering [J]. VACUUM, 2022, 59(4): 52-55.
[11] ZHANG Hui, Wang Xiao-bo, ZHANG Wei-xin, GONG Chun-zhi, TIAN Xiu-bo. Effect of Substrate Bias Mode on Structure and Hydrogen Resistance of CrN Thin Films [J]. VACUUM, 2022, 59(1): 18-23.
[12] LIU Yuan-dong. Study on the Properties of Large-area ZnO Thin Films Fabricated by Magnetron Sputtering Deposition [J]. VACUUM, 2022, 59(1): 29-32.
[13] ZHU Bei-bei, NI Chang, QIN Lin, CHU Jian-ning, CHEN Xiao, XU Jian-feng. Nano Film Deposition Technology Based on Magnetron Sputtering [J]. VACUUM, 2021, 58(6): 21-26.
[14] HE Ping, ZHANG Xu, YANG yang. Study on Magnetron Sputtering Film Process on Inner Wall of Cylinder with Different Matrix Materials [J]. VACUUM, 2021, 58(6): 33-37.
[15] YANG Zhao, LUO Jun-yao, LI Bao-chang, LI Shu-hua, TA Shi-wo, FU Zhen-xiao, NING Hong-long. Effect of Metallic Multilayer Films on Gold Wire Bonding Properties [J]. VACUUM, 2021, 58(6): 43-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .