欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (1): 57-62.doi: 10.13385/j.cnki.vacuum.2021.01.12

• 薄膜 • 上一篇    下一篇

氮分压对ZrN薄膜结构及颜色的影响

吴键坤1,2, 李兆国2, 彭丽萍2, 易勇1, 张继成2   

  1. 1.西南科技大学 材料科学与工程学院,四川 绵阳 621000;
    2.中国工程物理研究院激光聚变研究中心,四川 绵阳 621000
  • 收稿日期:2020-04-09 出版日期:2021-01-25 发布日期:2021-01-26
  • 通讯作者: 张继成,副研究员
  • 作者简介:吴键坤(1996-),男 ,四川省雅安市,硕士生。
  • 基金资助:
    *国家自然科学基金(编号:11604310); 国家自然科学基金(编号:21875061); 环境友好能源材料国家重点实验室自主课题资助(编号:237/19fksy08,1)

Effect of Nitrogen Ratio on Structure and Color of ZrN thin Films

WU Jian-kun1,2, LI Zhao-guo2, PENG Li-ping2, YI yong1, ZHANG Ji-cheng2   

  1. 1. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
    2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621000, China
  • Received:2020-04-09 Online:2021-01-25 Published:2021-01-26

摘要: 采用直流反应磁控溅射法,通过改变反应气体N2分压(5%、10%、20%、30%、40%、50%、60%),在SiO2/Si(111)基片上制备ZrN薄膜。利用XRD、SEM、EDS分析了薄膜的物相、结构、形貌以及成分,使用分光光度计测量了薄膜的反射光谱,并进一步确定了薄膜颜色在L*a*b*色度坐标中的位置,研究了氮分压对薄膜颜色的影响,以及ZrN薄膜颜色与薄膜成分、结构之间的关系。分析结果表明:在不同的氮分压下,ZrN薄膜具有较好的成膜质量;随着氮分压的增加,薄膜沉积速率降低、N含量增加;薄膜结晶度先升高后降低、且在氮分压为10%时,薄膜出现(111)的择优取向;薄膜颜色随薄膜成分结构的改变而发生明显的变化(颜色由银色向金色、暗金、深褐色以及非本征颜色转变)。当反应气体N2分压较低时,分压的增加使得锆与氮更容易键合,导致薄膜中N含量增加,使ZrN结晶度增大并出现择优取向。当N2分压超过10%后,薄膜中多余的氮处于晶格的间隙位置,使得薄膜晶格间距变大且结晶度降低,薄膜成分结构的改变导致了薄膜颜色的变化。

关键词: 氮化锆薄膜, 磁控溅射, 成分与结构, 色度

Abstract: Zirconium nitride thin films were deposited on SiO2/Si(111) substrates by direct current(DC) reactive magnetron sputtering of a zirconium target with different nitrogen ratio(5%, 10%, 20%, 30%, 40%, 50%, 60%). The structure, morphology and composition of films were determined by XRD, SEM and EDS analysis. The reflection spectrum of the films was obtained by using a spectrophotometer, and the coordinates of L*a*b* chromaticity were further determined. The effect of nitrogen partial pressure on the color of ZrN films and the relationship between the color and the composition and structure of ZrN films were studied. The experimental results show that all films are compact and homogeneous with increasement of nitrogen ratio. While the deposition rate decreased, the nitrogen content of the ZrN films increased, the crystallinity of the films increased first and then decreased, and the preferred(111) orientation of the films appeared with the nitrogen ratio of 10%. The film color changed significantly with the changing of the composition and structure of the films(from light gold to gold, dark gold, dark brown and non-intrinsic color). When the reaction gas N2 is low, the zirconium and nitrogen atoms bonded easily with the increasing of nitrogen ratio. Naturally, the content of N in the films increased, and the crystallinity of ZrN increased and the preferred orientation appeared. When the nitrogen ratio over 10%, the excess nitrogen atoms in the interstitial positions of crystal makes the lattice distance larger and the crystallinity decreased. The film color also changed with the changing of composition and structure of the films.

Key words: zirconium nitride, magnetron sputtering, composition and structure, chroma

中图分类号: 

  • TB34
[1] Karlsson B, Shimshock R P, Seraphin B O, et al.Optical properties of CVD-coated TiN, ZrN and HfN[J]. Sol. Energy Mater, 1983, 7: 401-411.
[2] Musil J, Kadlec S.Reactive sputtering of TiN films at large substrate to target distances[J]. Vacuum, 1990, 40: 435-444.
[3] 牛建钢, 孙维连. 氮分压对氮化锆薄膜颜色的影响规律研究[J]. 光学学报, 2007, 27: 177-180.
[4] Subramanian B, Prabakaran K, Jayachandran M.Influence of nitrogen flow rates on materials properties of CrNx films grown by reactive magnetron sputtering[J]. Bull. Mater. Sci, 2012, 35: 505-511.
[5] Chen S F, Kuo Y C, Wang C J, et al.The effect of Cr/Zr chemical composition ratios on the mechanical properties of CrN/ZrN multilayered coatings deposited by cathodic arc deposition system[J]. Surf. Coat. Technol., 2013, 231: 247-252.
[6] Gribaudo L, Arias D, Abriata J. The N-Zr(Nitrogen-Zirconium)System[J]. Journal of Phase Equilibria, 1994, 15: 441-449.
[7] Perry A.J, Schaffer J P, Brunner J, et al. A study of the picostructure of sputtered ZrN films[J]. Surf. Coat. Technol, 1991, 49: 188-193.
[8] Fayomi O S I, Monyai T, Popoola A P I. Wear stress mitigation and structural characteristics of highly performing zinc-based induced ZrO2/ZrN composite alloy coating on mild steel[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 1813-1821.
[9] Ruan J L, Lii D F, Lu H H, et al.Microstructural and electrical characteristics of reactively sputtered ZrNx thin films[J]. J. Alloys Compd, 2009, 478: 0-675.
[10] 李新领, 周志男, 孙维连, 等. 氮气流量对ZrN/Zr薄膜色度特性的影响[J]. 表面技术, 2013, 42: 13-12.
[11] Wu C Y, Chen J H, Kuo C G, et al.Effects of deposition parameters on the structure and properties of ZrN, WN and ZrWN films[J]. Bull. Mater. Sci, 2019, 42: 38.
[12] El-Saeed A H, Khalil A E, Hameed M F O, et al. Highly sensitive SPR PCF biosensors based on Ag/TiN and Ag/ZrN configurations[J]. Opt. Quantum Electron, 2019, 51.
[13] Yotsuya T, Yoshitake M, Yamamoto J.New type cryogenic thermometer using sputtered ZrNx films[J]. Appl. Phys. Lett., 1987, 51: 235-237.
[14] Guo J, Zhan G H, Liu J Q, et al.Hopping conduction in zirconium oxynitrides thin film deposited by reactive magnetron sputtering[J]. Physica B: Condensed Matter, 2015, 475: 86-89.
[15] Gowrishankar S, Balakrishnan L, Gopalakrishnan N.Fabrication of p-ZnO: ZrN thin films by RF magnetron sputtering[J]. Compos. Interfaces, 2013, 20: 623-634.
[16] Rizzo A, Valerini D, Capodieci L, et al.Reactive bipolar pulsed dual magnetron sputtering of ZrN films: The effect of duty cycle[J]. Appl. Surf. Sci., 2017, 427: 994-1002.
[17] 杨钰瑛, 孙维连, 李新领, 等. 采用中频反应磁控溅射技术沉积氮化锆薄膜[J]. 材料热处理学报, 2007, 28: 30-32.
[18] Nose M, Zhou M, Honbo E, et al. Colorimetric properties of ZrN and TiN coatings prepared by DC reactive sputtering[J]. Surf. Coat. Technol, 2001, 142-144: 211-217.
[19] Delachaux T, Hollenstein Ch, Lévy F, et al.Nitriding of tetragonal zirconia in a high current d. c. plasma source[J]. Thin Solid Films, 2003, 425: 113-116.
[20] Kiahosseini S R, Mojtahedzadeh Larijani M.Effects of nitrogen gas ratio on the structural and corrosion properties of ZrN thin films grown on biodegradable magnesium alloy by ion-beam sputtering[J]. Appl. Phys. A, 2017, 123: 759.
[21] Larijani M M, Kiani M, Tanhayi M, et al.Characterization of ion beam sputtered ZrN coatings prepared at different substrate temperatures[J]. Cryst. Res. Technol, 2011, 46: 351-356.
[22] Arias D F, Arango Y C, Devia A.Study of TiN and ZrN thin films grown by cathodic arc technique[J]. Appl. Surf. Sci. , 2006, 253: 1683-1690.
[23] Klumdoung P, Buranawong A, Chaiyakun S, et al.Variation of color in Zirconium nitride thin films prepared at high Ar flow rates with reactive dc magnetron sputtering[J]. Procedia Eng. , 2012, 32: 916-921.
[24] Benia H M, Guemmaz M, Schmerber G, et al.Investigations on non-stoichiometric zirconium nitrides[J]. Appl. Surf. Sci, 2002, 200: 231-238.
[25] 孙维连, 李颖, 赵亚玲, 等. 磁控溅射温度与时间对ZrN薄膜附着力的影响[J]. 材料热处理学报, 2012, 33: 121-124.
[26] 孙维连, 安广, 孙铂, 等. 磁控溅射ZrN薄膜厚度对其色度的影响[J]. 表面技术, 2012, 41: 47-47.
[27] 吴大维, 张志宏, 郭怀喜, 等. 直流反应磁控溅射法注积ZrN薄膜[J]. 材料研究学报, 1997, 11: 207-208.
[28] Niyomsoan S, Grant W, Olson D L, et al.Variation of color in titanium and zirconium nitride decorative thin films[J]. Thin Solid Films, 2002, 415: 187-194.
[29] Perry A J, Georgson M, Sproul W D.Variations in the reflectance of TiN, ZrN and HfN[J]. Thin Solid Films, 1988, 157: 255-265.
[1] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72-77.
[2] 王坤, 王世庆, 李建, 但敏, 陈伦江. 磁控溅射制备紧固件防咬死涂层的厚度均匀性研究*[J]. 真空, 2021, 58(1): 67-71.
[3] 戴永喜, 杨倩倩, 邓金祥, 孔乐, 刘红梅, 杨凯华, 王吉有. 不同Si含量掺杂的ZTO薄膜的制备与研究[J]. 真空, 2020, 57(6): 23-26.
[4] 韦贤露, 巩晨阳, 肖剑荣. 射频反应磁控溅射制备MoS2薄膜结构及光学性能*[J]. 真空, 2020, 57(5): 11-13.
[5] 王朝勇, 李伟, 王凯宏, 李宗泽, 刘志清, 余晨生, 王新练,王小妮,吴昊,马培芳. 直流磁控溅射制备锐钛矿TiO2薄膜生长速率的研究及其在多层膜制备中的应用*[J]. 真空, 2020, 57(5): 19-23.
[6] 王晓明, 鄂东梅, 武俊生, 张绪跃, 周艳文. 基于等离子体在磁控溅射增强的模拟*[J]. 真空, 2020, 57(3): 5-6.
[7] 张庆芳, 易勇, 罗江山. 溅射功率对铒薄膜微观结构的影响*[J]. 真空, 2020, 57(3): 17-20.
[8] 王忠连, 任少鹏, 阴晓俊, 王瑞生, 高鹏, 班超, 胡雯雯. 波长渐变滤光片的设计与测试探讨[J]. 真空, 2020, 57(1): 21-25.
[9] 吴厚朴, 田钦文, 田修波, 巩春志. 新型双极性高功率脉冲磁控溅射电源及放电特性研究*[J]. 真空, 2019, 56(6): 1-6.
[10] 廖荣, 邓永健, 王家驹, 赵飞兰, 郑若茜, 刘慧君, 柯嘉聪. 高介电氧化铪薄膜的制备与性能研究*[J]. 真空, 2019, 56(5): 52-55.
[11] 巫仕才, 尚心德. 柔性镀膜材料在电路板行业的应用[J]. 真空, 2019, 56(5): 65-68.
[12] 罗俊尧, 刘光壮, 杨曌, 李保昌, 沓世我. 镍铬硅薄膜电阻层的磁控溅射及湿法刻蚀工艺研究[J]. 真空, 2019, 56(5): 61-64.
[13] 伍醒, 蒋爱华, 程勇. 射频功率对DLC薄膜结构和力学性能的影响[J]. 真空, 2019, 56(4): 34-36.
[14] 王槐乾, 姜宏伟. 磁控溅射反应法制备TiN纳米薄膜[J]. 真空, 2019, 56(4): 37-39.
[15] 刘婵, 王东伟, 李晓敏, 武英桐, 黄美东. 脉冲负偏压对直流磁控溅射碳膜结构和性能的影响[J]. 真空, 2019, 56(2): 69-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王杰, 康颂, 董长昆. 微型碳纳米管低压传感器工作性能研究[J]. 真空, 2021, 58(1): 1 -5 .
[2] 李福送, 王文军, 林伟健, 潘亚娟. 智能化螺杆空压机性能检测系统的总体设计*[J]. 真空, 2021, 58(1): 19 -22 .
[3] 杨乃恒. 关于真空除气使用的真空泵情况分析与讨论[J]. 真空, 2021, 58(1): 29 -32 .
[4] 王逊. 真空测量技术及航天应用[J]. 真空, 2021, 58(1): 15 -18 .
[5] 张世伟, 孙坤, 韩峰. 螺杆真空泵设计的常见问题分析[J]. 真空, 2021, 58(1): 23 -28 .
[6] 张以忱. 第二十一讲 真空卷绕镀膜[J]. 真空, 2020, 57(6): 84 -86 .
[7] 柴昊, 贾军伟, 王斌, 李鹏, 崔爽, 冯旭, 李伟, 刘展, 李绍飞, 陈权. 紧凑型微波ECR等离子体源的设计及其特性研究[J]. 真空, 2021, 58(1): 6 -9 .
[8] 张骁, 刘招贤, 孟冬辉, 任国华, 王莉娜, 闫荣鑫. 多孔石墨烯渗氦仿真研究*[J]. 真空, 2021, 58(1): 10 -14 .
[9] 蔡潇, 曹曾, 张炜, 李瑞鋆, 黄勇. HL-2M装置真空室预抽气系统的研制*[J]. 真空, 2021, 58(1): 33 -37 .
[10] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72 -77 .