欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (1): 10-20.doi: 10.13385/j.cnki.vacuum.2024.01.02

• 薄膜 • 上一篇    下一篇

掺杂氧化铪基薄膜铁电性能的研究进展*

乌李瑛, 刘丹, 付学成, 程秀兰   

  1. 上海交通大学电子信息与电气工程学院先进电子材料与器件平台,上海 200240
  • 收稿日期:2023-02-17 出版日期:2024-01-25 发布日期:2024-01-24

Research Progress on Ferroelectric Properties of Hafnium Oxide Doped Thin Films

WU Li-ying, LIU Dan, FU Xue-cheng, CHENG Xiu-lan   

  1. Center for Advanced Electronic Materials and Devices, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-02-17 Online:2024-01-25 Published:2024-01-24

摘要: 铁电薄膜的研究多集中于钙钛矿结构材料,然而,这些传统的铁电材料存在与硅Si兼容性差、含铅而污染环境、物理厚度大、电阻低、带隙小等问题。不同的掺杂剂,如Si、Zr、Al、Y、Gd、Sr和La可以在HfO2薄膜中诱导铁电或反铁电性,使其剩余极化率达到45 µC·cm-2,矫顽力(1~2 MV·cm-1)比传统铁电薄膜大约1个数量级。同时,HfO2薄膜厚度可以非常薄(低于10 nm),并具有很大的带隙(约5 eV)。这些优于传统铁电材料的特质可以克服包括铁电场效应晶体管和三维电容传统铁电材料等在薄膜存储器应用中的障碍。除此之外,反铁电薄膜的热电耦合性将有望用于能量收集、存储、固态冷却和红外传感器等多种应用中。HfO2掺杂薄膜可以通过不同的沉积技术如ALD、溅射和CSD来制备,其中ALD技术沉积的薄膜优势更加明显。本文综述了近年来掺杂HfO2薄膜材料铁电性和反铁电性的研究进展,详细介绍了不同掺杂元素、薄膜厚度、晶粒尺寸、电极、退火及应力等对薄膜铁电性的影响。

关键词: 原子层沉积, 氧化铪薄膜, 掺杂, 铁电性, 极化

Abstract: Most studies on ferroelectric thin films are focused on perovskite structural materials. However, these traditional ferroelectric materials have a variety of problems, such as poor compatibility with Si, environmental pollution caused by Pb, large physical thickness, low resistance, and small band gap. Different dopants such as Si, Zr, Al, Y, Gd, Sr and La can induce ferroelectric or antiferroelectric properties in HfO2 films, resulting in residual polari stion up to 45 µC·cm-2 and coercivity (1~2 MV·cm-1) approximately one order of magnitude greater than that of conventional ferroelectric films. At the same time, the thickness of HfO2 films can be very thin (below 10 nm) and the band gap is large (~ 5 eV). These advantages over traditional ferroelectric materials can overcome the obstacles of traditional ferroelectric materials including ferroelectric field effect transistors and 3D capacitors in thin film memory applications. In addition, the electrical and thermal coupling of antiferroelectric films holds promise for a variety of applications, such as energy harvesting/storage, solid state cooling, and infrared sensors. HfO2 doped thin films can be deposited by different deposition techniques, such as ALD, sputtering and CSD, and ALD has more obvious advantages in film deposition. In this paper, the recent progress of ferroelectric and antiferroelectric properties in HfO2 doped thin films is reviewed. The effects of different doping elements, film thickness, grain size, electrode, annealing, and stress on the ferroelectric properties of HfO2 thin films are described in detail.

Key words: ALD, HfO2 thin film, doping, ferroelectric, polarization

中图分类号:  TB34

[1] VALASEK J.Piezoelectric and allied phenomena in rochelle salt[C]//Proceedings of the american physical society, 1920: 537.
[2] VALASEK J.Piezo-electric and allied phenomena in rochelle salt[J]. Physical Review, 1921, 17(4): 475-481.
[3] LINES M E, GLASS A.Principles and applications of ferroelectrics and related materials[M]. Oxford, UK: Clarendon Press Oxford University Press, 2001.
[4] SCOTT J F.Ferroelectric memories[M]. Berlin, Germany: Springer-Verlag, 2000.
[5] DUBOURDIEU C, BRULEY J, ARRUDA T M, et al.Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode[J]. Nature Nanotechnology, 2013, 8: 748-754.
[6] TAKAHASHI M, SAKAI S.Self-aligned-gate metal/ferroelectric/insulator/semiconductor field-effect transistors with long memory retention[J]. Japanese Journal of Applied Physics, 2005, 44(24-27): 800-802.
[7] KIM K, SONG Y J.Integration technology for ferroelectric memory devices[J]. Microelec-tronics Reliability, 2003, 43(3): 385-398.
[8] JEONG D S, THOMAS R, KATIYAR R S, et al.Emerging memories: resistive switching mechanisms and current status[J]. Reports on Progress in Physics Physical Society, 2012, 75(7): 076502.
[9] SETTER N, DAMJANOVIC D, ENG L, et al.Ferroelectric thin films: review of materials, properties, and applications[J]. Journal of Applied Physics, 2006, 100: 051606.
[10] BERSCH E, RANGAN S, BARTYNSKI R A, et al.Band offsets of ultrathin high-k oxide films with Si[J]. Physical Review B, 2008, 78(8): 085114.
[11] THIELSCH R, GATTO A, HEBER J, et al.A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition[J]. Thin Solid Films, 2002, 410(1/2): 86-93.
[12] GEORGE V, JAHAGIRDAR S, CHAO T, et al.Penryn: 45-nm next generation Intel® core™ 2 processor[C]//Asian Solid-state Circuits Conference. IEEE, 2007.
[13] OHTAKA O, FUKUI H, KUNISADA T, et al.Phase relations and volume changes of hafnia under high pressure and high temperature[J]. Journal of the American Ceramic Society, 2001, 84(6): 1369-1373.
[14] HOWARD C J, KISI E H, OHTAKA O.Crystal structures of two orthorhombic zirconias[J]. Journal of the American Ceramic Society, 1991, 74(9): 2321-2323.
[15] KISI E H.Influence of hydrostatic pressure on the t→o transformation in Mg-PSZ studied by in situ neutron diffraction[J]. Journal of the American Ceramic Society, 1998, 81(3): 741-745.
[16] ARASHI H.Pressure-induced phase transformation of HfO2[J]. Journal of the American Ce-ramic Society, 1992, 75(4): 844-847.
[17] KISI E H, HOWARD C J. Crystal structures of zirconia phases and their inter-relation[J]. Key Engineering Materials, 1998, 153/154: 1-36.
[18] HUAN T D, SHARMA V, Jr ROSSETTIG A, et al.Pathways towards ferroelectricity in Hafnia[J]. Physical Review B, 2014, 90(6): 064111.
[19] LOWTHER J E, DEWHURST J K, LEGER J M, et al.Relative stability of ZrO2 and HfO2 structural phases[J]. Physical Review B, 1999, 60(21): 14485.
[20] CLIMA S, WOUTERS D J, ADELMANN C, et al.Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO2:a first prin-ciples insight[J]. Applied Physics Letters, 2014, 104(9): 092906.
[21] PARK M H, KIM H J, KIM Y J, et al.The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity[J]. Applied Physics Letters, 2014, 104(7): 072901.
[22] BÖSCKE T S, MIILLER J, BRAUHAUS D, et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 2011, 99(10): 102903.
[23] STARSCHICH S, GRIESCHE D, SCHNELLER T, et al.Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes[J]. Applied Physics Letters, 2014, 104(20): 202903.
[24] MUELLER S, MUELLER J, SINGH A, et al.Incipient ferroelectricity in Al-doped HfO2 thin films[J]. Advanced Functional Materials, 22: 2412-2417.
[25] MÜLLER J, BÖSCKE T S, SCHRÖDER U, et al. Ferroelectricity in simple binary ZrO2 and HfO2[J]. Nano Letters, 2012, 12(8): 4318-4323.
[26] MUELLER J, SCHROEDER U, BOESCKE T S, et al.Ferroelectricity in yttrium-doped hafnium oxide[J]. Journal of Applied Physics, 2011, 110(11): 114113.
[27] MUELLER S, ADELMANN C, SINGH A, et al.Ferroelectricity in Gd-doped HfO2 thin films[J]. ECS Journal of Solid State Science & Technology, 2012, 1(6): 123-126.
[28] SCHROEDER U, YURCHUK E, MUELLER J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide[J]. Japanese Journal of Applied Physics, 2014, 53(8S1): 08LE02.
[29] SCHRÖDER U, MÜLLER J, YURCHUK E, et al. Hafnium oxide based CMOS compatible ferroelectric materials[J]. ECS Journal of Solid State Science & Technology. 2013, 2(4): 69-72.
[30] BOEESCKE T S, TEICHERT S, BRAEUHAUS D, et al.Phase transitions in ferroelectric silicon doped hafnium oxide[J]. Applied Physics Letters, 2011, 99(11): 112904.
[31] ZHOU D, MUELLER J, JIN X, et al.Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films[J]. Applied Physics Letters, 2012, 100(8): 082905.
[32] ZHOU D, XU J, LI Q, et al.Wake-up effects in Si-doped hafnium oxide ferroelectric thin films[J]. Applied Physics Letters, 2013, 103(19): 192904.
[33] YURCHUK E, MÜLLER J, KNEBELS, et al.Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films[J]. Thin Solid Films 2013, 533: 88-92.
[34] LOMENZO P D, ZHAO P, TAKMEEL Q, et al. Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes[J]. Journal of Vacuum Science & Technology B, 2014, 32(2): 03D123.
[35] RICHTER C, SCHENK T, SCHROEDER U, et al. Film properties of lowtemperature HfO2 grown with H2O, O3, or remote O2-plasma[J]. Journal of Vacuum Science & Technology A,2014, 32: 01A117.
[36] HOFFMANN M, SCHENK T, KULEMANOVI, et al. Low temperature compatible hafnium oxide based ferroelectrics[J]. Ferroelectrics, 2015, 480(1): 16-23.
[37] SLATER J C.Atomic radii in crystals[J]. Journal of Chemical Physics, 1964, 41(10): 3199-3204.
[38] ZHAO L, NELSON M, ALDRIDGE H, et al.Crystal structure of Si-doped HfO2[J]. Journal of Applied Physics, 2014, 115(3): 034104.
[39] SPEER J A, COOPER B J.Crystal structure of synthetic hafnon, HfSiO4, comparison with zircon and the actinide orthosilicates[J].American Mineralogist, 1982, 67: 804-808.
[40] MARTIN D, J MÜLLER, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric[J]. Advanced Materials, 2015, 26(48): 8198-8202.
[41] LOMENZO P D, TAKMEEL Q, ZHOU C, et al.The effects of layering in ferroelectric Si-doped HfO2 thin films[J]. Applied Physics Letters, 2014, 105(7): 072906.
[42] MUELLER S, MULLER J, SCHROEDER U, et al.Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications[J]. IEEE Transactions on Device and Materials Re-liability, 2013, 13(1): 93-97.
[43] PARK M H, KIM H J, KIM Y J, et al.Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature[J]. Applied Physics Letters, 2013, 102(24): 242905.
[44] HWANG C S.Atomic layer deposition for semiconductors[M]. New York, USA: Springer, 2014.
[45] MÜLLER J, BÖSCKE T S, BRÄUHAUS D, et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications[J]. Applied Physics Letters, 2012, 99(11): 112901.
[46] PARK M H, KIM H J, KIM Y J, et al.Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes[J]. Applied Physics Letters, 2013, 102(11): 112914.
[47] PARK M H, KIM H J, KIM Y J, et al.Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on TiN bottom and TiN or RuO2 top electrodes[J].Physica Status Solidi (RRL), 2014, 8: 532-535.
[48] PARK M H, KIM H J, KIM Y J, et al.Study on the degradation mechanism of the ferroe-lectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes[J]. Applied Physics Letters, 2014, 105(7): 072902.
[49] PARK M H, KIM H J, KIM Y J, et al.Ferroelectricity and antiferroelectricity of doped thin HfO2-based films[J]. Advanced Materials, 2015, 27: 1811-1831.
[50] PARK M H, KIM H J, KIM Y J, et al.Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfxZr1-xO2 films[J]. Nano Energy, 2015, 12: 131-140.
[51] PARK M H, KIM H J, KIM Y J, et al.Effect of the annealing temperature of thin Hf0.3Zr0.7O2 films on their energy storage behavior[J]. Physica Status Solidi (RRL), 2014, 8(10): 857-861.
[52] SHIMIZU T, YOKOUCHI T, SHIRAISHI T, et al. Study on the effect of heat treatment conditions on metalorganic-chemical-vapor-deposited ferroelectric Hf0.5Zr0.5O2 thin film on Ir electrode[J]. Japanese Journal of Applied Physics, 2014, 53(9S): 09PA04.
[53] OLSEN T, SCHROEDER U, MUELLER S, et al.Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties[J]. Applied Physics Letters, 2012, 101(8): 082905.
[54] POLAKOWSKI P, RIEDEL S, WEINREICH W, et al.Ferroelectric deep trench capacitors based on Al:HfO2 for 3D nonvolatile memory applications[C]//IEEE 6th International Memory Workshop. Taipei:IEEE, 2014.
[55] SCHENK T, MUELLER S, SCHROEDER U, et al.Strontium doped hafnium oxide thin films: wide process window for ferroelectric memories[C]//Solid-state Device Research Confer-ence. Bucharest, Romania: IEEE, 2013.
[56] MÜLLER J, BÖSCKE T S, MÜLLER S, et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories[C]//2013 IEEE International Electron Devices Meeting. Washington, DC, USA: IEEE, 2013.
[57] KIM G H, LEE H J, JIANG A Q, et al.An analysis of imprinted hysteresis loops for a ferroelectric Pb(Zr,Ti)O3 thin film capacitor using the switching transient current measurements[J]. Journal of Applied Physics, 2009, 105(4): 044106.
[58] LEE H J, KIM G H, PARK M H, et al.Polarization reversal behavior in the Pt/Pb(Zr,Ti)O3/Pt and Pt/Al2O3/Pb(Zr,Ti)O3/Pt capacitors for different reversal directions[J]. Applied Physics Letters, 2010, 96(21): 212902.
[59] PARK M H, LEE H J, KIM G H, et al.Tristate memory using sferroelec - tric - insulator - semiconductor heterojunctions for 50% increased data storage[J]. Advanced Func-tional Materials, 2011, 21(22): 4305-4313.
[60] JIANG A Q, LEE H J, KIM G H, et al.The inlaid Al2O3 tunnel switch for ultrathin ferro-electric films[J]. Advanced Materials, 2009, 21(28): 2870-2875.
[61] GARVIE R C.The occurrence of metastable tetragonal zirconia as a crystallite size effect[J]. The Journal of Physical Chemistry, 1965, 69(4): 1238-1243.
[62] GARVIE R C.Stabilization of the tetragonal structure in zirconia microcrystals[J]. The Journal of Physical Chemistry, 1978, 82(2), 218-224.
[63] PITCHER M W, USHAKOV S V, NAVROTSKY A, et al.Energy crossovers in nanocrystalline zirconia[J]. Journal of the American Ceramic Society. 2005, 88(1): 160-167.
[64] SHANDALOV M, MCINTYRE P C.Size-dependent polymorphism in HfO2 nanotubes and nanoscale thin films[J]. Journal of Applied Physics, 2009, 106(8): 084322.
[65] CHO D Y, JUNG H S, YU I H, et al.Stabilization of tetragonal HfO2 under low active oxygen source environment in atomic layer deposition[J]. Chemistry of Materials, 2012, 24: 3534-3543.
[66] KIM S K, HWANG C S.Atomic layer deposition of ZrO2 thin films with high dielectric constant on TiN substrates[J]. Electrochemical and Solid-State Letters, 2008, 11(3):9-11.
[67] MATERLIK R, KÜNNETHC, KERSCH A. The origin of ferroelectricity in HfxZr1-xO2: a computational investiga-tion and a surface energy model[J]. Journal of Applied Physics, 2015, 117(13): 134109.
[68] GRUVERMAN A, KOLOSOV O, HATANO J, et al.Domain structure and polarization re-versal in ferroelectrics studied by atomic force microscopy[J]. Journal of Vacuum Science & Technology B, 1995, 13(3): 1095-1099.
[69] PARK M H, KIM H J, KIM Y J, et al.Thin HfxZr1-xO2films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability[J]. Advanced Energy Materials, 2014, 4(16): 1400610.
[70] YOO I K, DESU S B.Mechanism of fatigue in ferroelectric thin filmsZ[J]. Physica Status Solidi A, 1992, 133(2): 565-573.
[71] NEVITT M V, FANG Y, CHAN S K.Heat capacity of monoclinic zirconia between 2.75 and 350 K[J]. Journal of the American Ceramic Society, 1990, 73(8): 2502-2504.
[72] TOJO T, ATAKE T, MORI T, et al.Heat capacity and thermodynamic function of zirconia and yttria-stabilized zirconia[J]. Journal of Chemical Thermodynamics, 1999, 31(7): 831-845.
[73] JAFFE J E, BACHORZ R A, GUTOWSKI M.Low-temperature polymorphs of ZrO2 and HfO2. A density functional theory study[J]. Physical Review B, 2005, 72(14): 144107.
[74] SIMONCIC P, NAVROSKY A.Energetics of rare-earth-doped hafnia[J]. Journal of Materials Research, 2007, 22: 876-885.
[75] NIX W D, CLEMENS B M.Crystallite coalescence: a mechanism for intrinsic tensile stresses in thin films[J]. Journal of Materials Research, 1999, 14(8): 3467-3473.
[1] 李国浩, 万亿, 张昕洁, 杜广煜. 类金刚石薄膜抗腐蚀疲劳性能的研究进展*[J]. 真空, 2023, 60(6): 22-31.
[2] 任冬雪, 孙小杰, 陈兰兰. 功能性PET复合膜的制备及性能研究*[J]. 真空, 2023, 60(4): 18-23.
[3] 乌李瑛, 瞿敏妮, 付学成, 田苗, 马玲, 程秀兰. Cu电极保护膜层氧化铝的原子层沉积工艺研究*[J]. 真空, 2023, 60(1): 30-35.
[4] 陈兰兰, 孙小杰, 尉琳琳, 任月庆, 任冬雪, 梁文斌. 利用PEALD制备PET基Al2O3阻隔膜及其性能研究*[J]. 真空, 2022, 59(6): 40-44.
[5] 王冬远, 周甜, 陈强, 刘忠伟. 钯金属薄膜制备方法的研究现状与进展*[J]. 真空, 2022, 59(5): 7-13.
[6] 段珊珊, 施昌勇, 杨丽珍, 刘忠伟, 张海宝, 陈强. 原子层沉积法制备Al2O3薄膜研究近况和发展趋势[J]. 真空, 2021, 58(6): 13-20.
[7] 张晓霞, 邓金祥, 孔乐, 李瑞东, 杨子淑, 张杰. 不同浓度的Si掺杂β-Ga2O3薄膜的制备及研究*[J]. 真空, 2021, 58(5): 57-61.
[8] 杨子淑, 段苹, 邓金祥, 张晓霞, 张杰, 杨倩倩. 不同浓度的Mg掺杂β-Ga2O3薄膜的制备与研究*[J]. 真空, 2021, 58(3): 30-34.
[9] 张玉琛, 张海宝, 陈强. 高功率脉冲磁控溅射制备ZnO薄膜的研究进展*[J]. 真空, 2021, 58(1): 72-77.
[10] 戴永喜, 杨倩倩, 邓金祥, 孔乐, 刘红梅, 杨凯华, 王吉有. 不同Si含量掺杂的ZTO薄膜的制备与研究[J]. 真空, 2020, 57(6): 23-26.
[11] 张爽, 董闯, 马艳平, 丁万昱. 薄膜的材料特征*[J]. 真空, 2020, 57(4): 11-18.
[12] 樊启鹏, 胡玉莲, 刘博文, 田旭, 江德荣, 刘忠伟. 等离子体增强原子层沉积技术制备碳化钴薄膜*[J]. 真空, 2019, 56(5): 56-60.
[13] 张子欣, 刘忠伟, 杨丽珍, 陈强. 等离子体辅助原子层沉积技术包覆硅基氮化物荧光粉的结果性能研究[J]. 真空, 2019, 56(4): 19-23.
[14] 李如永, 段苹, 崔敏, 王吉有, 原安娟, 邓金祥. 后退火对射频磁控溅射法制备Mg掺杂Ga2O3薄膜性质的影响[J]. 真空, 2019, 56(3): 37-40.
[15] 王晓然, 马艳彬, 段 苹, 李如永, 庄碧辉, 崔 敏, 原安娟, 邓金祥. Mg 掺杂浓度对射频磁控溅射制备 Ga2O3 薄膜性质的影响[J]. 真空, 2018, 55(6): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .