欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (3): 57-62.doi: 10.13385/j.cnki.vacuum.2024.03.10

• 薄膜 • 上一篇    下一篇

沉积参数对TiO2纳米薄膜的显微结构和光学性能的影响*

纪建超1,2, 颜悦1,2, 哈恩华1,2   

  1. 1.北京航空材料研究院股份有限公司,北京 100095;
    2.北京市先进运载系统结构透明件工程技术研究中心,北京 100095
  • 收稿日期:2023-10-26 发布日期:2024-06-04
  • 作者简介:纪建超(1972-),男,河北省石家庄市人,硕士,高级工程师。
  • 基金资助:
    * 国家自然科学基金资助项目(51802297)

Effect of Deposition Parameters on Microstructure and Optical Properties of TiO2 Nanofilms

JI Jian-chao1,2, YAN Yue1,2, HA En-hua1,2   

  1. 1. Beijing Institute of Aeronautical Materials Co. LTD., Beijing 100095, China;
    2. Beijing Engineering Centre of Advanced Structural Transparencies for the Modern Traffic System, Beijing 100095, China
  • Received:2023-10-26 Published:2024-06-04

摘要: 采用直流脉冲磁控溅射的方法,在有机玻璃上沉积了纳米TiO2 光学薄膜。研究了沉积功率、基片温度等参数对TiO2 薄膜结构及光学性能的影响。借助椭圆偏振光测试仪、X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)、分光光度计、原子力显微镜(AFM)等表征手段分析了薄膜的光学特性、元素组成、结晶性能及显微结构。结果表明:随沉积功率的增加,薄膜氧含量降低,粒径减小,折射率递增,可见光波段的透过率和反射率递减;随基片温度上升,薄膜的沉积速率降低,这促进了薄膜粒子的聚集,在光学方面表现为随温度上升,折射率及可见光透过率同时增加;TiO2薄膜的禁带宽度在3.12~3.16eV之间,随沉积功率增加和基片温度上升,其禁带宽度递减。

关键词: TiO2薄膜, 磁控溅射, 显微结构, 光学性能

Abstract: Nano-sized TiO2 optical films were deposited on PMMA by DC pulsed magnetron sputtering method. The effects of deposition power, substrate temperature on the structure and optical properties of TiO2 films were studied. The optical properties, elemental composition, crystallization properties and microstructure of the films were analyzed by means of elliptic polarization analyzer, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), spectrophotometer and atomic force microscope (AFM). The results show that with the increase of deposition power, the oxygen content of the film decreases, the particle size of the film decreases, and the refractive index increases, while the transmittance and reflectivity of the visible light band decreases. The increasing substrate temperature reduces the deposition rate of the film and promotes the aggregation of the film particles. The refractive index and visible light transmittance both increase with the substrate temperature. The band gap of TiO2 film ranges between 3.12-3.16 eV and decreases with the increase of deposition power and substrate temperature.

Key words: TiO2 thin film, magnetron sputtering, microstructure, optical property

中图分类号:  TB34

[1] CUCE E, CUCE PM, RIFFAT S.TiO2 nano-coated thin film PV glazing with superior thermal resistance, self-cleaning, electricity generation and adaptive optical control[J]. International Journal of Low-Carbon Technologies, 2022, 17:130-139.
[2] DOGHMANE H E, TOUAM T, CHELOUCHE A, et al.investigation of the influences of post-thermal annealing on physical properties of TiO2 thin films deposited by RF sputtering[J]. Semiconductors, 2020, 54: 268-273.
[3] LIU Y Y, QIAN L Q, GUO C, JIA X, et al.Natural superhydrophilic TiO2/SiO2 composite thin film Deposited by radio frequence magnetron sputtering[J].Journal of Alloys and Compounds, 2009, 479(1/2): 532-535.
[4] RUDAKOVA A V, EMELINE A V, ROMANYCHEV A I, et al.Photoinduced hydrophilic behavior of TiO2 thin film on Si substrate[J]. Journal of Alloys and Compounds,2021,872: 159746.
[5] MITHUN M H, SAYED A, RAHAMAN I.The Effect of Band-Gap on TiO2 thin film considering various parameters[J]. Proceedings of Engineering and Technology Innovation, 2021, 19: 45-52.
[6] 蔺增, 吕少波, 林铁源, 等. 面向心血管应用的电子束蒸发氧化钛薄膜的特性——润湿性与血液相容性[J]. 东北大学学报(自然科学版), 2009, 30(6): 873-876.
[7] 谭宇, 梁宏军, 刘永强, 等. 用二氧化钛、二氧化硅和氟化镁膜料镀制0.4 μm~1.1 μm超宽带增透膜[J]. 应用光学,2007, 28(5): 623-626.
[8] SAIKIA P, SAIKIA B K, BHUYAN H.Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films[J]. AIP Advances, 2016, 6(4): 045206.
[9] BAKER L R, SEO H, HERVIER A,et al.Generation of highly N-type, defect passivated transition metal oxides using plasma fluorine insertion:WO2011US65587[P]. [2021-12-16].
[10] HEO C H, LEE S B, BOO J H, et al.Depositon of TiO2 thin film using RF magnetron sputtering method and study of their surface characteristics[J].Thin Solid Film,2005,475(1/2):183-188.
[11] KIM W G, RHEE S W.Effect of post annealing on the resistive swicthing of TiO2 thin film[J]. Microelectronic Engineering, 2009, 86(11): 2153-2156.
[12] MIN Y, LIU X Z,HU L F, et al.Effects of Nb doping on microstructure and photocatalytic properties of TiO2 thin film[J]. Desalination and water treatment Science and engineering, 2016, 57(15): 6910-6915.
[13] XIE H, LIU B S, ZHAO X J, et al.Facile process to greatly improve the photocatalytic activity of the TiO2 thin film on window glass for the photodegradation acetone and benzene[J]. Chemical engineering journal, 2016, 284: 1156-1164.
[14] SOUSSI A, HSSI A A, BOULKADAT L, et al.Electronic and optical properties of TiO2 thin films: combined experimental and theoretical study[J].Journal of Electronic Materials, 2021,50: 4497-4510.
[15] 潘永强, 朱昌, 弥谦, 等. 电子束蒸发TiO2薄膜的光学特性[J]. 应用光学, 2004, 25(5): 53-55.
[16] KRUCHININ V N, PEREVALOV T V, ATUCHIN V V, et al.Optical Properties of TiO2 films deposited by reactive electron beam sputtering[J].Journal of Electronic Materials, 2017, 46: 6089-6095.
[17] NGUYEN H H, KIM D J, PARK D W, et al.,Effect of initial precursor concentration on TiO2 thin film nanostructures prepared by PCVD system[J]. Journal of Energy Chemistry, 2013, 22(3): 375-381.
[18] ZHOU M, ROUALDÈS S, ZHAO J, et al. Nanocrystalline TiO2 thin film prepared by low-temperature plasma-enhanced chemical vapor deposition for photocatalytic applications[J].Thin Solid Films,2015,589: 770-777.
[19] JOLIVET A, LABBÉ C, FRILAY C,et al.Structural, optical, and electrical properties of TiO2 thin films deposited by ALD: Impact of the substrate, the deposited thickness and the deposition temperature[J]. Applied Surface Science, 2023, 608:155214.
[20] HUSSIN R O, CHOY K L, HOU X H.Growth of TiO2 Thin Films by Atomic Layer Deposition (ALD)[J]. Advanced Materials Research, 2016, 1133: 352-356.
[21] JOLIVET A, LABBÉ C, FRILAY C, et al.Structural, optical, and electrical properties of TiO2 thin films deposited by ALD: Impact of the substrate, the deposited thickness and the deposition temperature[J]. Applied Surface Science,2023,608:155214.
[22] 顾培夫. 薄膜技术[M].杭州:浙江大学出版社, 1990:38-56.
[23] 薛增泉, 吴全德, 李洁. 薄膜物理[M]. 北京:电子工业出版社, 1991: 231-252.
[24] SENTHILKUMAR V, JAYACHANDRAN M, SANJEEVIRAJA C.Preparation of anatase TiO2 thin films for dye-sensitized solar cells by DC reactive magnetron sputtering technique[J]. Thin Solid Films, 2010,519:991-994.
[25] BANG K H, HWANG D K, LIM S W, et al.Effects of growth temperature on the properties of ZnO/GaAs prepared by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2003, 250(3/4): 437-443.
[1] 李灿民, 董中林, 夏正卫, 张心凤, 魏荣华. 等离子增强磁控溅射制备TiCr基纳米复合涂层的显微组织和性能[J]. 真空, 2024, 61(2): 10-15.
[2] 李灿民, 张心凤, 魏荣华. 等离子增强磁控溅射制备TiCr基纳米复合涂层的耐冲蚀耐腐蚀性能[J]. 真空, 2023, 60(5): 37-41.
[3] 刘文丽, 刘旭, 尹翔. 动态磁场矩形平面磁控靶开发[J]. 真空, 2023, 60(5): 47-50.
[4] 张艳鹏, 曹志强, 付强, 曹磊, 刘旭. 卷绕镀铜工艺对复合集流体电学性能影响研究[J]. 真空, 2023, 60(4): 8-12.
[5] 黄传鑫, 辛纪英, 田中俊, 王猛, 吕凯凯, 梁兰菊, 刘云云. 氧气等离子体处理提升InZnO材料及TFT电学性能和稳定性研究*[J]. 真空, 2023, 60(4): 24-28.
[6] 余康元, 何玉丹, 杨波, 罗江山. 溅射电压对高功率脉冲磁控溅射Cu箔微观结构及性能的影响*[J]. 真空, 2023, 60(3): 1-4.
[7] 向玉春, 朱建雷, 袁亚. 氧气压强对脉冲激光沉积法制备的CuO薄膜性能的影响*[J]. 真空, 2023, 60(3): 42-45.
[8] 张汉焱, 郑丹旭, 沈奕, 陈玉云. 中频磁控反应溅射氧化硅(SiOx)薄膜绝缘性的研究*[J]. 真空, 2023, 60(2): 34-38.
[9] 张健, 齐振华, 李建浩, 牛夏斌, 徐全国, 宗世强. 磁控溅射法制备ITO膜层及其光电性能研究[J]. 真空, 2022, 59(6): 45-50.
[10] 赵琦, 满玉岩, 李苏雅, 李松原, 李琳. 面向干式电抗器的氟碳纳米结构薄膜性能调控方法研究*[J]. 真空, 2022, 59(6): 51-55.
[11] 辛先峰, 刘林根, 林国强, 董闯, 丁万昱, 张爽, 王棋震, 李军, 万鹏. Zr55Cu30Al10Ni5非晶薄膜的制备与性能研究*[J]. 真空, 2022, 59(5): 1-6.
[12] 张健, 李建浩, 齐振华. 探究直流磁控溅射下工艺参数对SiC薄膜性能的影响规律[J]. 真空, 2022, 59(4): 52-55.
[13] 张辉, 王晓波, 张炜鑫, 巩春志, 田修波. 基体偏压模式对CrN薄膜结构和阻氢性能的影响*[J]. 真空, 2022, 59(1): 18-23.
[14] 刘沅东. 磁控溅射制备大面积ZnO薄膜性能的研究[J]. 真空, 2022, 59(1): 29-32.
[15] 朱蓓蓓, 倪昌, 秦琳, 楚建宁, 陈肖, 许剑锋. 基于磁控溅射的纳米金属薄膜沉积工艺研究*[J]. 真空, 2021, 58(6): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .