欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (1): 41-46.doi: 10.13385/j.cnki.vacuum.2024.01.06

• 薄膜 • 上一篇    下一篇

脉冲激光沉积ZnSe:Cox纳米晶薄膜的微结构及光学性质研究*

李树锋1, 王丽2, 高东文2   

  1. 1.中国人民警察大学警务装备技术学院,河北 廊坊 065000;
    2.北京工业大学理学部物理与光电工程系,北京 100124
  • 收稿日期:2023-04-17 出版日期:2024-01-25 发布日期:2024-01-24
  • 作者简介:李树锋(1976-),男,河北省大城人,博士,副教授。
  • 基金资助:
    * 廊坊市科技计划项目(No.2021011002)

Studies on the Microstructure and Optical Properties of Nanocrystalline ZnSe:Cox Thin Film Prepared by Pulsed Laser Deposition

LI Shu-feng1, WANG Li2, GAO Dong-wen2   

  1. 1. College of Police Equipment Technical, Chinese People's Police University, Langfang 065000, China;
    2. College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • Received:2023-04-17 Online:2024-01-25 Published:2024-01-24

摘要: 采用脉冲激光沉积技术在基片温度为800 ℃条件下制备了不同Co含量的ZnSe:Cox(x=0.1, 0.3, 0.5)微晶薄膜。通过X射线衍射、原子力显微镜、X射线光电子能谱、红外透射光谱及光致发光光谱分析了薄膜的微结构及光学特性。结果表明:所制备的纳米晶薄膜结晶质量优秀,具有(111)择优取向,薄膜结晶质量、光谱透射率和光学带隙均随Co含量的增加而减小;薄膜在波长约700 ~850 nm处存在一吸收带,这源于Co2+在周围Se2-构成的四面体晶场中4A2(4F)→4T1(4P)能级之间的跃迁;当Co掺入量x=0.5时,薄膜达到过掺杂状态,α-Co杂质相出现,薄膜红外光致发光谱大幅降低。

关键词: 脉冲激光沉积, 硒化锌掺钴, 薄膜, 光学性质

Abstract: ZnSe:Cox (x=0.1, 0.3, 0.5) nanocrystalline thin films were deposited on sapphire substrates by pulsed laser deposition at substrate temperature of 800 ℃. The crystal structure and optical properties of the thin films were investigated by X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy, optical transmittance and photoluminescence spectra. The results show that the thin films with excellent crystalline quality and (111) preferred orientation are prepared. With increasing Co concentration, the crystalline quality, average transmittance and band gap of films decrease. There is a absorption band at the wavelength of about 700-850 nm in the film, which comes from the transition between 4A2(4F)→4T1(4P) energy levels of Co2+ in the tetrahedral crystal field composed of surrounding Se2-. The films reach an overdoping state when the x value increases to 0.5, and the photoluminescence intensity of films decrease substantially due to the α-Co impurities un-incorporating into ZnSe lattice.

Key words: pulsed laser deposition, ZnSe:Co, thin film, optical property

中图分类号:  O472

[1] KARADZA B, AVERMAET H V, MINGABUDINOVA L, et al.Efficient, high-CRI white LEDs by combining traditional phosphors with cadmium-free InP/ZnSe red quantum dots[J]. Photonics Research, 2022, 10(1): 155-165.
[2] YIN H, BAO K, WANG Y, et al.Photocatalytic properties of zinc selenide and cobalt selenide nanocomposite[J]. Journal of the Chemical Society of Pakistan, 2022, 44(2): 89-97.
[3] SUNAINA, GANGULI A K, MEHTA S K. High performance ZnSe sensitized ZnO heterostructures for photo-detection applications[J]. Journal of Alloys and Compounds, 2022, 894: 162263.
[4] ELSAEEDY H I, HASSAN A A, YAKOUT H A, et al.The significant role of ZnSe layer thickness in optimizing the performance of ZnSe/CdTe solar cell for optoelectronic applications[J]. Optics & Laser Technology, 2021, 141:107139.
[5] CHENG Y Z, ZHANG X B, SONG H X.C5+ ion irradiated ZnSe optical waveguide operating from near-infrared to mid-infrared wavelength band[J]. Optik, 2022, 255: 168715.
[6] BILLAHA M A, BHOWMICK B, CHOUDHARY S K, Investigating inter-subband photocurrent in CdS/ZnSe quantum well photodetector for infrared applications[J]. Microsystem Technologies, 2021, 27(9): 3357-3363.
[7] 莫延宏, 张钢强, 孙朋涛. ZnSe:Mn纳米片的合成及光催化性能研究[J]. 中国锰业, 2022, 40(2):15-20.
[8] ZOU M, WANG J, KHAN M S, et al.Spin-related optical behaviors of dilute magnetic semiconductor ZnSe:Ni(II) nanobelts[J]. Nanotechnology, 2020, 31(32): 325002.
[9] PAWAR S T, CHAVAN G T, PRAKSHALE V M, et al.Probing into the optical and electrical properties of hybrid Zn1-xCoxSe thin films[J]. Journal of Materials Science: Materials in Electronics, 2018, 29:3704-3714.
[10] 张健, 齐振华, 李建浩, 等.磁控溅射法制备ITO膜层及其光电性能研究[J]. 真空, 2022, 59(6): 45-50.
[11] XU W L, NIU M S, YANG X Y, et al.Chemical vapor deposition growth of phase-selective inorganic lead halide perovskite films for sensitive photodetectors[J]. Chinese Chemical Letters,2021, 32(1): 489-492.
[12] 刘祺, 徐均琪, 苏俊宏, 等.热蒸发技术制备梯度折射率薄膜的研究[J]. 真空, 2022, 59(6): 22-28.
[13] LI S F, WANG L, GAO D W, et al.Effects of substrate temperature on microstructure, morphology and optical properties of ZnSe:Co films obtained by pulsed laser deposition[J]. Thin Solid Films, 2018, 660: 405-410.
[14] XIA K L, JIA G, GAN H T, et al.Ultrabroadband mid-infrared emission from Cr2+:ZnSe doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching[J]. Chinese Physics B, 2021, 30(9): 094208.
[15] HASABELDAIM E, NTWAEABORWA O M, KROON R E, et al.Effect of substrate temperature and post annealing temperature on ZnO:Zn PLD thin film properties[J]. Optical Materials, 2017, 74: 139-149.
[16] LAURETI S, AGOSTINELLI E, SCAVIA G, et al.Effect of oxygen partial pressure on PLD cobalt oxide films[J]. Applied Surface Science, 2008, 254(16): 5111-5115.
[17] SU X Q, WANG L, CHEN J B, et al.Role of cobalt in ZnO:Co thin films[J]. Journal of Physics D: Applied Physics, 2011, 44: 265002.
[18] 文昌秀, 石华伟, 陈美伶, 等. 过渡金属Co2+离子掺杂ZnS硫化物纳米晶制备与中红外发光特性研究[J]. 光子学报, 2020, 49(2): 199-204.
[19] 党新志, 张仁刚, 张鹏, 等. 不同硫压退火对溅射沉积ZnS薄膜性能的影响[J]. 物理学报, 2023, 72(3): 107-113.
[20] BAHADUR N, SRIVASTAVA A K, KUMAR S, et al.Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films[J]. Thin Solid Films, 2010, 518(18): 5257-5264.
[21] PRAYAS C P, SURAJIT G, SRIVASTAVA P C, Antiferromagnetic coupling in Co-doped ZnS[J]. Journal of Materials Science, 2015, 50(24): 7919-7929.
[22] 杨扬, 李刚, 金克武, 等. 室温射频磁控溅射制备纳米晶ZnSx薄膜及其性能研究[J]. 光子学报, 2021, 50(7): 230-237.
[1] 乌李瑛, 刘丹, 付学成, 程秀兰. 掺杂氧化铪基薄膜铁电性能的研究进展*[J]. 真空, 2024, 61(1): 10-11.
[2] 赵祯赟, 陈定君, 郭圆萌, 杨皓, 东帅, 孙铁生, 黄美东. 不同温度下氮化铬薄膜的疏水性能研究*[J]. 真空, 2024, 61(1): 27-33.
[3] 李国浩, 万亿, 张昕洁, 杜广煜. 类金刚石薄膜抗腐蚀疲劳性能的研究进展*[J]. 真空, 2023, 60(6): 22-31.
[4] 吴小虎, 呼书杰, 孙恩泽, 张鑫, 赵琦. 面向大空间建筑的氟化非晶碳薄膜性能调控方法研究*[J]. 真空, 2023, 60(6): 42-46.
[5] 黄传鑫, 辛纪英, 田中俊, 王猛, 吕凯凯, 梁兰菊, 刘云云. 氧气等离子体处理提升InZnO材料及TFT电学性能和稳定性研究*[J]. 真空, 2023, 60(4): 24-28.
[6] 朱建华, 潘婧, 岳建明, 郝丽萍, 支鹏伟, 贾哲. 不同生长温度下Zn1-xSbxO薄膜的结构与发光性能研究*[J]. 真空, 2023, 60(3): 18-23.
[7] 向玉春, 朱建雷, 袁亚. 氧气压强对脉冲激光沉积法制备的CuO薄膜性能的影响*[J]. 真空, 2023, 60(3): 42-45.
[8] 张汉焱, 郑丹旭, 沈奕, 陈玉云. 中频磁控反应溅射氧化硅(SiOx)薄膜绝缘性的研究*[J]. 真空, 2023, 60(2): 34-38.
[9] 杨曌, 付振晓, 沓世我, 王鑫豪, 姚日晖, 宁洪龙. 钽氮化合物电阻薄膜的研究进展*[J]. 真空, 2022, 59(6): 34-39.
[10] 张健, 齐振华, 李建浩, 牛夏斌, 徐全国, 宗世强. 磁控溅射法制备ITO膜层及其光电性能研究[J]. 真空, 2022, 59(6): 45-50.
[11] 赵琦, 满玉岩, 李苏雅, 李松原, 李琳. 面向干式电抗器的氟碳纳米结构薄膜性能调控方法研究*[J]. 真空, 2022, 59(6): 51-55.
[12] 辛先峰, 刘林根, 林国强, 董闯, 丁万昱, 张爽, 王棋震, 李军, 万鹏. Zr55Cu30Al10Ni5非晶薄膜的制备与性能研究*[J]. 真空, 2022, 59(5): 1-6.
[13] 王冬远, 周甜, 陈强, 刘忠伟. 钯金属薄膜制备方法的研究现状与进展*[J]. 真空, 2022, 59(5): 7-13.
[14] 吴帅, 刘爽, 覃礼钊, 张旭, 张同华, 廖斌, 王可平. FCVAD技术制备CrCN薄膜的热稳定性研究[J]. 真空, 2022, 59(5): 14-19.
[15] 付学成, 乌李瑛, 栾振兴, 毛海平, 王英. 用于电子束蒸镀金属银膜的钨坩埚改造[J]. 真空, 2022, 59(3): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .